Cell Biology


Publications
86

Genome reduction in an abundant and ubiquitous soil bacterium ‘Candidatus Udaeobacter copiosus’

Citation
Brewer et al. (2016). Nature Microbiology 2 (2)
Names
Ca. Udaeobacter copiosus
Abstract
AbstractAlthough bacteria within the Verrucomicrobia phylum are pervasive in soils around the world, they are under-represented in both isolate collections and genomic databases. Here, we describe a single verrucomicrobial group within the class Spartobacteria that is not closely related to any previously described taxa. We examined more than 1,000 soils and found this spartobacterial phylotype to be ubiquitous and consistently one of the most abundant soil bacterial phylotypes, particularly in
Text

Nitrogen fixation in a chemoautotrophic lucinid symbiosis

Citation
König et al. (2016). Nature Microbiology 2 (1)
Names
Ca. Thiodiazotropha fergusoni “Thiodiazotropha endolucinida”
Abstract
AbstractThe shallow water bivalve Codakia orbicularis lives in symbiotic association with a sulfur-oxidizing bacterium in its gills. The endosymbiont fixes CO2 and thus generates organic carbon compounds, which support the host's growth. To investigate the uncultured symbiont's metabolism and symbiont–host interactions in detail we conducted a proteogenomic analysis of purified bacteria. Unexpectedly, our results reveal a hitherto completely unrecognized feature of the C. orbicularis symbiont's
Text

Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota

Citation
Vanwonterghem et al. (2016). Nature Microbiology 1 (12)
Names
Ca. Methanomethylicia Ca. Methanomethylicus Ca. Methanomethylicus mesodigestus Ca. Methanomethylicus oleisabuli “Methanosuratincola petrocarbonis HOMONYM_1” “Methanosuratincola HOMONYM_1” Ca. Methanomethylicaceae Ca. Methanomethylicales “Methanomethylicota”
Abstract
AbstractMethanogenesis is the primary biogenic source of methane in the atmosphere and a key contributor to climate change. The long-standing dogma that methanogenesis originated within the Euryarchaeota was recently challenged by the discovery of putative methane-metabolizing genes in members of the Bathyarchaeota, suggesting that methanogenesis may be more phylogenetically widespread than currently appreciated. Here, we present the discovery of divergent methyl-coenzyme M reductase genes in po
Text

Genomic inference of the metabolism of cosmopolitan subsurface Archaea, Hadesarchaea

Citation
Baker et al. (2016). Nature Microbiology 1 (3)
Names
Hadarchaeum yellowstonense Ts
Abstract
AbstractThe subsurface biosphere is largely unexplored and contains a broad diversity of uncultured microbes1. Despite being one of the few prokaryotic lineages that is cosmopolitan in both the terrestrial and marine subsurface2–4, the physiological and ecological roles of SAGMEG (South-African Gold Mine Miscellaneous Euryarchaeal Group) Archaea are unknown. Here, we report the metabolic capabilities of this enigmatic group as inferred from genomic reconstructions. Four high-quality (63–90% comp
Text