Microbiology (medical)


Publications
287

Response of the Anaerobic Methanotrophic Archaeon Candidatus “Methanoperedens nitroreducens” to the Long-Term Ferrihydrite Amendment

Citation
Cai et al. (2022). Frontiers in Microbiology 13
Names
Abstract
Anaerobic methanotrophic (ANME) archaea can drive anaerobic oxidation of methane (AOM) using solid iron or manganese oxides as the electron acceptors, hypothetically via direct extracellular electron transfer (EET). This study investigated the response of Candidatus “Methanoperedens nitroreducens TS” (type strain), an ANME archaeon previously characterized to perform nitrate-dependent AOM, to an Fe(III)-amended condition over a prolonged period. Simultaneous consumption of methane and production

Methane-Dependent Extracellular Electron Transfer at the Bioanode by the Anaerobic Archaeal Methanotroph “Candidatus Methanoperedens”

Citation
Ouboter et al. (2022). Frontiers in Microbiology 13
Names
Ca. Methanoperedens
Abstract
Anaerobic methanotrophic (ANME) archaea have recently been reported to be capable of using insoluble extracellular electron acceptors via extracellular electron transfer (EET). In this study, we investigated EET by a microbial community dominated by “Candidatus Methanoperedens” archaea at the anode of a bioelectrochemical system (BES) poised at 0 V vs. standard hydrogen electrode (SHE), in this way measuring current as a direct proxy of EET by this community. After inoculation of the BES, the ma

An Overview of the Mechanisms Against “Candidatus Liberibacter asiaticus”: Virulence Targets, Citrus Defenses, and Microbiome

Citation
Yang, Ancona (2022). Frontiers in Microbiology 13
Names
Ca. Liberibacter asiaticus
Abstract
Citrus Huanglongbing (HLB) or citrus greening, is the most destructive disease for citrus worldwide. It is caused by the psyllid-transmitted, phloem-limited bacteria “Candidatus Liberibacter asiaticus” (CLas). To date, there are still no effective practical strategies for curing citrus HLB. Understanding the mechanisms against CLas can contribute to the development of effective approaches for combatting HLB. However, the unculturable nature of CLas has hindered elucidating mechanisms against CLa

Integrated Analysis of the miRNAome and Transcriptome Reveals miRNA–mRNA Regulatory Networks in Catharanthus roseus Through Cuscuta campestris-Mediated Infection With “Candidatus Liberibacter asiaticus”

Citation
Zeng et al. (2022). Frontiers in Microbiology 13
Names
Ca. Liberibacter asiaticus
Abstract
Citrus Huanglongbing (HLB) is the most devastating disease of citrus caused by the Gram-negative phloem-limited bacterium “Candidatus Liberibacter asiaticus” (CLas). It can be transmitted by the Asian citrus psyllid “Diaphorina citri,” by grafting, and by the holoparasitic dodder. In this study, the non-natural host periwinkle (Catharanthus roseus) was infected via dodder (Cuscuta campestris) from CLas-infected citrus plants, and the asymptomatic leaves (AS) were subjected to transcriptomic and

Comparative Genome Analysis of ‘Candidatus Phytoplasma luffae’ Reveals the Influential Roles of Potential Mobile Units in Phytoplasma Evolution

Citation
Huang et al. (2022). Frontiers in Microbiology 13
Names
Ca. Phytoplasma luffae
Abstract
Phytoplasmas are insect-transmitted plant pathogens that cause substantial losses in agriculture. In addition to economic impact, phytoplasmas induce distinct disease symptoms in infected plants, thus attracting attention for research on molecular plant-microbe interactions and plant developmental processes. Due to the difficulty of establishing an axenic culture of these bacteria, culture-independent genome characterization is a crucial tool for phytoplasma research. However, phytoplasma genome

Overexpression of a “Candidatus Liberibacter Asiaticus” Effector Gene CaLasSDE115 Contributes to Early Colonization in Citrus sinensis

Citation
Du et al. (2022). Frontiers in Microbiology 12
Names
Liberibacter
Abstract
Huanglongbing (HLB), caused by “Candidatus liberibacter asiaticus” (CaLas), is one of the most devastating diseases in citrus but its pathogenesis remains poorly understood. Here, we reported the role of the CaLasSDE115 (CLIBASIA_05115) effector, encoded by CaLas, during pathogen-host interactions. Bioinformatics analyses showed that CaLasSDE115 was 100% conserved in all reported CaLas strains but had sequence differences compared with orthologs from other “Candidatus liberibacter.” Prediction o

Survey for ‘Candidatus Liberibacter’ and ‘Candidatus Phytoplasma’ in Citrus in Chile

Citation
Quiroga et al. (2021). Pathogens 11 (1)
Names
Liberibacter Ca. Phytoplasma
Abstract
The considerable economic losses in citrus associated with ‘Candidatus Liberibacter’ and ‘Candidatus Phytoplasma’ presence have alerted all producing regions of the world. In Chile, none of these bacteria have been reported in citrus species. During the years 2017 and 2019, 258 samples presenting symptoms similar to those associated with the presence of these bacteria were examined. No detection of ‘Ca. Liberibacter’ associated with “huanglongbing” disease was obtained in the tested samples; the