Hedlund, Brian P.


Publications
24

Genomic Insights of “Candidatus Nitrosocaldaceae” Based on Nine New Metagenome-Assembled Genomes, Including “Candidatus Nitrosothermus” Gen Nov. and Two New Species of “Candidatus Nitrosocaldus”

Citation
Luo et al. (2021). Frontiers in Microbiology 11
Names
Ca. Nitrosocaldaceae “Nitrosocaldales” Ca. Nitrosocaldus Ca. Nitrosothermus
Abstract
“Candidatus Nitrosocaldaceae” are globally distributed in neutral or slightly alkaline hot springs and geothermally heated soils. Despite their essential role in the nitrogen cycle in high-temperature ecosystems, they remain poorly understood because they have never been isolated in pure culture, and very few genomes are available. In the present study, a metagenomics approach was employed to obtain “Ca. Nitrosocaldaceae” metagenomic-assembled genomes (MAGs) from hot spring samples collected fro

All ANIs are not created equal: implications for prokaryotic species boundaries and integration of ANIs into polyphasic taxonomy

Citation
Palmer et al. (2020). International Journal of Systematic and Evolutionary Microbiology 70 (4)
Names
Abstract
In prokaryotic taxonomy, a set of criteria is commonly used to delineate species. These criteria are generally based on cohesion at the phylogenetic, phenotypic and genomic levels. One such criterion shown to have promise in the genomic era is average nucleotide identity (ANI), which provides an average measure of similarity across homologous regions shared by a pair of genomes. However, despite the popularity and relative ease of using this metric, ANI has undergone numerous refinements, with v

Deciphering symbiotic interactions of ‘Candidatus Aenigmarchaeota’ with inferred horizontal gene transfers and co-occurrence networks

Citation
Li et al. (2020).
Names
Ca. Aenigmarchaeota
Abstract
Abstract Background: ‘Ca. Aenigmarchaeota’ represents an evolutionary branch within the DPANN superphylum. However, their ecological roles and potential host-symbiont interactions are poorly understood.Results: Here, we analyze eight metagenomic-assembled genomes from hot spring habitats and reveal their functional potentials. Although they have limited metabolic capacities, they harbor substantial carbohydrate metabolizing abilities. Further investigation suggests that horizontal gene t

Insights into the ecological roles and evolution of methyl-coenzyme M reductase-containing hot spring Archaea

Citation
Hua et al. (2019). Nature Communications 10 (1)
Names
Ca. Methanoproducendum senex
Abstract
Abstract Several recent studies have shown the presence of genes for the key enzyme associated with archaeal methane/alkane metabolism, methyl-coenzyme M reductase (Mcr), in metagenome-assembled genomes (MAGs) divergent to existing archaeal lineages. Here, we study the mcr-containing archaeal MAGs from several hot springs, which reveal further expansion in the diversity of archaeal organisms performing methane/alkane metabolism. Significantly, an MAG basal to organisms from the phy

Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs

Citation
Eloe-Fadrosh et al. (2016). Nature Communications 7 (1)
Names
“Kryptoniota” Kryptonium thompsonii Ts Kryptonium “Chryseopegocella kryptomonas”
Abstract
AbstractAnalysis of the increasing wealth of metagenomic data collected from diverse environments can lead to the discovery of novel branches on the tree of life. Here we analyse 5.2 Tb of metagenomic data collected globally to discover a novel bacterial phylum (‘Candidatus Kryptonia’) found exclusively in high-temperature pH-neutral geothermal springs. This lineage had remained hidden as a taxonomic ‘blind spot’ because of mismatches in the primers commonly used for ribosomal gene surveys. Geno