Publications
4372

Sort by date names
Browse by authors subjects journals

Plant hairy roots enable high throughput identification of antimicrobials against Candidatus Liberibacter spp

Citation
Irigoyen et al. (2020). Nature Communications 11 (1)
Names
Liberibacter
Abstract
AbstractA major bottleneck in identifying therapies to control citrus greening and other devastating plant diseases caused by fastidious pathogens is our inability to culture the pathogens in defined media or axenic cultures. As such, conventional approaches for antimicrobial evaluation (genetic or chemical) rely on time-consuming, low-throughput and inherently variable whole-plant assays. Here, we report that plant hairy roots support the growth of fastidious pathogens likeCandidatusLiberibacte
Text

Metabolic Diversity and Evolutionary History of the Archaeal Phylum “ Candidatus Micrarchaeota” Uncovered from a Freshwater Lake Metagenome

Citation
Kadnikov et al. (2020). Applied and Environmental Microbiology 86 (23)
Names
Ca. Diapherotrites “Micrarchaeota” “Fermentimicrarchaeales” “Fermentimicrarchaeaceae”
Abstract
The recently described superphylum DPANN includes several phyla of uncultivated archaea with small cell sizes, reduced genomes, and limited metabolic capabilities. One of these phyla, “ Ca . Micrarchaeota,” comprises an enigmatic group of archaea found in acid mine drainage environments, the archaeal Richmond Mine acidophilic nanoorganisms (ARMAN) group. Analysis of their reduced genomes revealed the absence of key metabolic pathways consistent with their par
Text

Epidemiological Investigations and Molecular Characterization of ‘Candidatus Phytoplasma solani’ in Grapevines, Weeds, Vectors and Putative Vectors in Western Sicily (Southern Italy)

Citation
Conigliaro et al. (2020). Pathogens 9 (11)
Names
Ca. Phytoplasma solani
Abstract
Bois noir is caused by ‘Candidatus Phytoplasma solani’, and it is one of the most important and widespread diseases in the Euro-Mediterranean region. There are complex interactions between phytoplasma and grapevines, weeds, and vectors. These ecological relationships can be tracked according to molecular epidemiology. The aims of the 2-year study (2014–2015) were to describe incidence and spatial distribution of Bois noir in a vineyard with three grapevine varieties in Sicily, and to identify th
Text

CandidatusDechloromonas phosphatis” and “CandidatusDechloromonas phosphovora”, two novel polyphosphate accumulating organisms abundant in wastewater treatment systems

Citation
Petriglieri et al. (2020).
Names
Ca. Dechloromonas phosphatis Ca. Dechloromonas phosphovora
Abstract
AbstractMembers of the genusDechloromonasare often abundant in enhanced biological phosphorus removal (EBPR) systems and are recognized putative polyphosphate accumulating organisms (PAOs), but their role in phosphate (P) removal is still unclear. Here, we used 16S rRNA gene sequencing and fluorescencein situhybridization (FISH) to investigate the abundance and distribution ofDechloromonasspp. in Danish wastewater treatment plants. Two species were abundant, novel, and uncultured, and could be t
Text

Multiplex detection of “CandidatusLiberibacter asiaticus” andSpiroplasma citriby qPCR and droplet digital PCR

Citation
Maheshwari et al. (2020).
Names
Ca. Liberibacter asiaticus
Abstract
Abstract“CandidatusLiberibacter asiaticus” (CLas) andSpiroplasma citriare phloem-limited bacteria that infect citrus and are transmitted by insect vectors.S. citricauses citrus stubborn disease (CSD) and is vectored by the beet leafhopper in California.CLas is associated with the devastating citrus disease, Huanglongbing (HLB), and is vectored by the Asian citrus psyllid.CLas is a regulatory pathogen spreading in citrus on residential properties in southern California and is an imminent threat t
Text

Production of nonulosonic acids in the extracellular polymeric substances of “CandidatusAccumulibacter phosphatis”

Citation
Tomás-Martínez et al. (2020).
Names
“Accumulibacter” “Accumulibacter phosphatis”
Abstract
AbstractNonulosonic acids (NulOs) are a family of acidic carbohydrates with a nine-carbon backbone, which include different related structures, such as sialic acids. They have mainly been studied for their relevance in animal cells and pathogenic bacteria. Recently, sialic acids have been discovered as important compound in the extracellular matrix of virtually all microbial life and in “CandidatusAccumulibacter phosphatis”, a well-studied polyphosphate-accumulating organism, in particular. Here
Text

Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities

Citation
Waite et al. (2020). International Journal of Systematic and Evolutionary Microbiology 70 (11)
Names
15 Names
Abstract
The classDeltaproteobacteriacomprises an ecologically and metabolically diverse group of bacteria best known for dissimilatory sulphate reduction and predatory behaviour. Although this lineage is the fourth described class of the phylumProteobacteria, it rarely affiliates with other proteobacterial classes and is frequently not recovered as a monophyletic unit in phylogenetic analyses. Indeed, one branch of the classDeltaproteobacteriaencompassingBdellovibrio-like predators was recently reclassi
Text