Publications
4368

Sort by date names
Browse by authors subjects journals

Response of the Anaerobic Methanotroph “ Candidatus Methanoperedens nitroreducens” to Oxygen Stress

Citation
Guerrero-Cruz et al. (2018). Applied and Environmental Microbiology 84 (24)
Names
Ca. Methanoperedens nitroreducens
Abstract
“ Candidatus Methanoperedens nitroreducens” is an anaerobic archaeon which couples the reduction of nitrate to the oxidation of methane. This microorganism is present in a wide range of aquatic environments and man-made ecosystems, such as paddy fields and wastewater treatment systems. In such environments, these archaea may experience regular oxygen exposure. However, “ Ca . Methanoperedens nitroreducens” is able to thrive under such
Text

Draft Genome Sequence of “ Candidatus Spirobacillus cienkowskii,” a Pathogen of Freshwater Daphnia Species, Reconstructed from Hemolymph Metagenomic Reads

Citation
Bresciani et al. (2018). Microbiology Resource Announcements 7 (22)
Names
Spirobacillus cienkowskii Ts
Abstract
We report here the near-complete genome sequence of “ Candidatus Spirobacillus cienkowskii,” a spiral-shaped, red-pigmented uncultivated bacterial pathogen of Daphnia spp. The genome is 2.74 Mbp in size, has a GC content of 32.1%, and contains genes associated with bacterial motility and the production of carotenoids, which could explain the distinctive red color of hosts infected with this pathogen.

Genomic profiling of four cultivated Candidatus Nitrotoga spp. predicts broad metabolic potential and environmental distribution

Citation
Boddicker, Mosier (2018). The ISME Journal 12 (12)
Names
Ca. Nitrotoga
Abstract
Abstract Nitrite-oxidizing bacteria (NOB) play a critical role in the mitigation of nitrogen pollution by metabolizing nitrite to nitrate, which is removed via assimilation, denitrification, or anammox. Recent studies showed that NOB are phylogenetically and metabolically diverse, yet most of our knowledge of NOB comes from only a few cultured representatives. Using cultivation and genomic sequencing, we identified four putative Candidatus Nitrotoga NOB species from freshwater sed
Text

A Secreted ‘Candidatus Liberibacter asiaticus’ Peroxiredoxin Simultaneously Suppresses Both Localized and Systemic Innate Immune Responses In Planta

Citation
Jain et al. (2018). Molecular Plant-Microbe Interactions® 31 (12)
Names
Ca. Liberibacter asiaticus
Abstract
The oxidative (H2O2) burst is a seminal feature of the basal plant defense response to attempted pathogen invasions. In ‘Candidatus Liberibacter asiaticus’ UF506, expression of the SC2 prophage-encoded secreted peroxidase (F489_gp15) increases bacterial fitness and delays symptom progression in citrus. Two chromosomal 1-Cys peroxiredoxin genes, CLIBASIA_RS00940 (Lasprx5) and CLIBASIA_RS00445 (Lasbcp), are conserved among all sequenced ‘Ca. L. asiaticus’ strains, including those lacking prophage
Text