Publications
4442

Sort by date names
Browse by authors subjects journals

Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota

Citation
Vanwonterghem et al. (2016). Nature Microbiology 1 (12)
Names
Ca. Methanomethylicia Ca. Methanomethylicus Ca. Methanomethylicus mesodigestus Ca. Methanomethylicus oleisabuli “Methanosuratincola petrocarbonis HOMONYM_1” “Methanosuratincola HOMONYM_1” Ca. Methanomethylicaceae Ca. Methanomethylicales “Methanomethylicota”
Abstract
AbstractMethanogenesis is the primary biogenic source of methane in the atmosphere and a key contributor to climate change. The long-standing dogma that methanogenesis originated within the Euryarchaeota was recently challenged by the discovery of putative methane-metabolizing genes in members of the Bathyarchaeota, suggesting that methanogenesis may be more phylogenetically widespread than currently appreciated. Here, we present the discovery of divergent methyl-coenzyme M reductase genes in po
Text

Genomes of Candidatus Wolbachia bourtzisii wDacA and Candidatus Wolbachia pipientis wDacB from the Cochineal Insect Dactylopius coccus (Hemiptera: Dactylopiidae)

Citation
Ramírez-Puebla et al. (2016). G3 Genes|Genomes|Genetics 6 (10)
Names
Ca. Wolbachia bourtzisii Ca. Wolbachia pipientis
Abstract
Abstract Dactylopius species, known as cochineal insects, are the source of the carminic acid dye used worldwide. The presence of two Wolbachia strains in Dactylopius coccus from Mexico was revealed by PCR amplification of wsp and sequencing of 16S rRNA genes. A metagenome analysis recovered the genome sequences of Candidatus Wolbachia bourtzisii wDacA (supergroup A) and Candidatus Wolbachia pipientis wDacB (supergroup B). Genome read coverage, as well as 16S rRNA clone sequencing
Text