Publications
3843

Sort by date names
Browse by authors subjects journals

Ultrastructure and phylogenetic analysis of ‘Candidatus Neoehrlichia mikurensis' in the family Anaplasmataceae, isolated from wild rats and found in Ixodes ovatus ticks

Citation
Kawahara et al. (2004). International Journal of Systematic and Evolutionary Microbiology 54 (5)
Names
Ca. Neoehrlichia mikurensis
Abstract
A novel bacterium that infects laboratory rats was isolated from wild Rattus norvegicus rats in Japan. Transmission electron microscopy of the spleen tissue revealed small cocci surrounded by an inner membrane and a thin, rippled outer membrane in a membrane-bound inclusion within the cytoplasm of endothelial cells. Phylogenetic analysis of the 16S rRNA gene sequence of the bacterium found in R. norvegicus rats and Ixodes ovatus ticks in Japan revealed that the organism represents a novel clade

“ Candidatus Endobugula glebosa,” a Specific Bacterial Symbiont of the Marine Bryozoan Bugula simplex

Citation
Lim et al. (2004). Applied and Environmental Microbiology 70 (8)
Names
“Endobugula glebosa”
Abstract
ABSTRACT The bryozoans Bugula neritina and Bugula simplex harbor bacteria in the pallial sinuses of their larvae as seen by electron microscopy. In B. neritina , the bacterial symbiont has been characterized as a gamma-proteobacterium, “ Candidatus Endobugula sertula.” “ Candidatus E. sertula” has been implicated as the source of the bryostatins, polyketi

Symbionts of the gut flagellate Staurojoenina sp. from Neotermes cubanus represent a novel, termite-associated lineage of Bacteroidales: description of ‘Candidatus Vestibaculum illigatum’

Citation
Stingl et al. (2004). Microbiology 150 (7)
Names
Ca. Vestibaculum illigatum
Abstract
The symbioses between cellulose-degrading flagellates and bacteria are one of the most fascinating phenomena in the complex micro-ecosystem found in the hindgut of lower termites. However, little is known about the identity of the symbionts. One example is the epibiotic bacteria colonizing the surface of hypermastigote protists of the genusStaurojoenina. By using scanning electron microscopy, it was shown that the whole surface ofStaurojoeninasp. from the termiteNeotermes cubanusis densely cover

Clover proliferation phytoplasma: ‘Candidatus Phytoplasma trifolii’

Citation
Hiruki et al. (2004). International Journal of Systematic and Evolutionary Microbiology 54 (4)
Names
Ca. Phytoplasma trifolii
Abstract
Clover proliferation phytoplasma (CPR) is designated as the reference strain for the CP phylogenetic group or subclade, on the basis of molecular analyses of genomic DNA, the 16S rRNA gene and the 16S–23S spacer region. Other strains related to CPR include alfalfa witches'-broom (AWB), brinjal little leaf (BLL), beet leafhopper-transmitted virescence (BLTV), Illinois elm yellows (ILEY), potato witches'-broom (PWB), potato yellows (PY), tomato big bud in California (TBBc) and phytoplasmas from Fr

‘Candidatus Phytoplasma mali’, ‘Candidatus Phytoplasma pyri’ and ‘Candidatus Phytoplasma prunorum’, the causal agents of apple proliferation, pear decline and European stone fruit yellows, respectively

Citation
Seemuller et al. (2004). International Journal of Systematic and Evolutionary Microbiology 54 (4)
Names
Ca. Phytoplasma mali Ca. Phytoplasma prunorum Ca. Phytoplasma pyri
Abstract
Apple proliferation (AP), pear decline (PD) and European stone fruit yellows (ESFY) are among the most economically important plant diseases that are caused by phytoplasmas. Phylogenetic analyses revealed that the 16S rDNA sequences of strains of each of these pathogens were identical or nearly identical. Differences between the three phytoplasmas ranged from 1·0 to 1·5 % of nucleotide positions and were thus below the recommended threshold of 2·5 % for assigning species rank to phytoplasmas und

‘Candidatus Phytoplasma cynodontis’, the phytoplasma associated with Bermuda grass white leaf disease

Citation
Marcone et al. (2004). International Journal of Systematic and Evolutionary Microbiology 54 (4)
Names
Ca. Phytoplasma cynodontis
Abstract
Bermuda grass white leaf (BGWL) is a destructive, phytoplasmal disease of Bermuda grass (Cynodon dactylon). The causal pathogen, the BGWL agent, differs from other phytoplasmas that cluster in the same major branch of the phytoplasma phylogenetic clade in <2·5 % of 16S rDNA nucleotide positions, the threshold for assigning species rank to phytoplasmas under the provisional status ‘Candidatus’. Thus, the objective of this work was to examine homogeneity of BGWL isolates and to determine whethe

‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects

Citation
The IRPCM Phytoplasma/Spiroplasma Working Team - Phytoplasma taxonomy group, The IRPCM Phytoplasma/Spiroplasma Working Team – Phytoplasma taxonomy group (2004). International Journal of Systematic and Evolutionary Microbiology 54 (4)
Names
Aeolococcales “Phytoplasma cocoitanzaniae” “Phytoplasma cocoinigeriae” Ca. Phytoplasma
Abstract
The trivial name ‘phytoplasma’ has been adopted to collectively name wall-less, non-helical prokaryotes that colonize plant phloem and insects, which were formerly known as mycoplasma-like organisms. Although phytoplasmas have not yet been cultivated in vitro, phylogenetic analyses based on various conserved genes have shown that they represent a distinct, monophyletic clade within the class Mollicutes. It is proposed here to accommodate phytoplasmas within the novel genus ‘Candidatus (Ca.) Phyt

‘Candidatus Phytoplasma asteris’, a novel phytoplasma taxon associated with aster yellows and related diseases

Citation
Lee et al. (2004). International Journal of Systematic and Evolutionary Microbiology 54 (4)
Names
Ca. Phytoplasma asteris
Abstract
Aster yellows (AY) group (16SrI) phytoplasmas are associated with over 100 economically important diseases worldwide and represent the most diverse and widespread phytoplasma group. Strains that belong to the AY group form a phylogenetically discrete subclade within the phytoplasma clade and are related most closely to the stolbur phytoplasma subclade, based on analysis of 16S rRNA gene sequences. AY subclade strains are related more closely to their culturable relatives, Acholeplasma spp., than