Publications
4452

Sort by date names
Browse by authors subjects journals

Development of a Loop-Mediated Isothermal Amplification (LAMP) Method to Detect the Potato Zebra Chip Pathogen ‘Candidatus Liberibacter solanacearum’ (Lso) and Differentiate Haplotypes A and B

Citation
Jiang et al. (2023). Plant Disease 107 (6)
Names
“Liberibacter solanacearum”
Abstract
‘Candidatus Liberibacter solanacearum’ (Lso) is the causal agent of zebra chip of potato (Solanum tuberosum), which can significantly reduce potato yield. In this study, a loop-mediated isothermal amplification (LAMP) method for the detection of Lso haplotypes A and B was developed and evaluated. Two sets of LAMP primers named LAMP-A and LAMP-B were designed and tested for specificity and sensitivity. Both LAMP-A and LAMP-B were specific to Lso in in silico analysis using the Primer-Blast tool.
Text

Phylogenic position and low genomic diversity of “Candidatus Rickettsia kotlanii” inferred by complete genome sequences of two Japanese isolates

Citation
Gotoh et al. (2023). Microbiology and Immunology 67 (6)
Names
Ca. Rickettsia kotlanii
Abstract
AbstractMany Rickettsia species of the spotted fever group (SFG) cause tick‐borne diseases known as “spotted fever.” One of the candidate SFG Rickettsia species is “Candidatus Rickettsia kotlanii,” which was first detected in Haemaphysalis concinna in Hungary in 2006. However, its precise phylogenetic position in the SFG is not clear because only single‐gene sequence–based phylogenetic analyses were performed using very limited genes. Here, we present the complete genome sequences of two Japanes
Text

Physiological Variables Influenced by ‘Candidatus Liberibacter asiaticus’ Infection in Two Citrus Species

Citation
Wu et al. (2023). Plant Disease 107 (6)
Names
Ca. Liberibacter asiaticus
Abstract
‘Candidatus Liberibacter asiaticus’ is the bacterium associated with the citrus disease known as huanglongbing (HLB). This study evaluated the influence of ‘Ca. L. asiaticus’ infection on a number of key plant physiological variables concerning photosynthesis, cell integrity, reactive oxygen species scavengers’ activity, and osmoregulation of two different species of citrus—the pomelo Citrus maxima and the mandarin C. reticulata ‘Tankan’—relative to their measured ‘Ca. L. asiaticus’ infection l
Text

Candidatus Alkanophaga archaea from Guaymas Basin hydrothermal vent sediment oxidize petroleum alkanes

Citation
Zehnle et al. (2023). Nature Microbiology 8 (7)
Names
Ca. Alkanophaga Ca. Thermodesulfobacterium syntrophicum
Abstract
AbstractMethanogenic and methanotrophic archaea produce and consume the greenhouse gas methane, respectively, using the reversible enzyme methyl-coenzyme M reductase (Mcr). Recently, Mcr variants that can activate multicarbon alkanes have been recovered from archaeal enrichment cultures. These enzymes, called alkyl-coenzyme M reductase (Acrs), are widespread in the environment but remain poorly understood. Here we produced anoxic cultures degrading mid-chain petroleum n-alkanes between pentane (
Text

Candidatus Nealsonbacteria” Are Likely Biomass Recycling Ectosymbionts of Methanogenic Archaea in a Stable Benzene-Degrading Enrichment Culture

Citation
Chen et al. (2023). Applied and Environmental Microbiology 89 (5)
Names
“Nealsoniibacteriota”
Abstract
An anaerobic microbial enrichment culture was used to study members of candidate phyla that are difficult to grow in the lab. We were able to visualize tiny “ Candidatus Nealsonbacteria” cells attached to a large Methanothrix cell, revealing a novel episymbiosis.

Spatial Distribution and Temporal Dynamics of Candidatus Liberibacter Asiaticus in Different Stages of Embryos, Nymphs and Adults of Diaphorina citri

Citation
Nian et al. (2023). International Journal of Molecular Sciences 24 (10)
Names
Liberibacter Ca. Liberibacter asiaticus
Abstract
Huanglongbing, a globally devastating citrus disease, is associated with Candidatus Liberibacter asiaticus (CLas) and is mainly transmitted by Diaphorina citri. Verification of the distribution and dynamics of CLas in D. citri is critical to understanding CLas transmitted by vectors in nature. Here, the distribution and titers of CLas in different sexes and tissues of D. citri adults were investigated by fluorescence in-situ hybridization (FISH) and quantitative real-time PCR (qRT-PCR). Results
Text