Search results
13


Introducing Candidatus Bathyanammoxibiaceae, a family of bacteria with the anammox potential present in both marine and terrestrial environments

Citation
Zhao et al. (2022). ISME Communications 2 (1)
Names
Ca. Bathyanammoxibiaceae Ca. Brocadiales
Abstract
AbstractAnaerobic ammonium oxidation (Anammox) bacteria are a group of extraordinary bacteria exerting a major impact on the global nitrogen cycle. Their phylogenetic breadth and diversity, however, are not well constrained. Here we describe a new, deep-branching family in the order of Candidatus Brocadiales, Candidatus Bathyanammoxibiaceae, members of which have genes encoding the key enzymes of the anammox metabolism. In marine sediment cores from the Arctic Mid-Ocean Ridge (AMOR), the presenc

Novel bacterial taxa in a minimal lignocellulolytic consortium and their potential for lignin and plastics transformation

Citation
Díaz Rodríguez et al. (2022). ISME Communications 2 (1)
Names
Pristimantibacillus Pristimantibacillus lignocellulolyticus Ts Ochrobactrum gambitense
Abstract
AbstractThe understanding and manipulation of microbial communities toward the conversion of lignocellulose and plastics are topics of interest in microbial ecology and biotechnology. In this study, the polymer-degrading capability of a minimal lignocellulolytic microbial consortium (MELMC) was explored by genome-resolved metagenomics. The MELMC was mostly composed (>90%) of three bacterial members (Pseudomonas protegens; Pristimantibacillus lignocellulolyticus gen. nov., sp. nov; and Ochroba

Recoding of stop codons expands the metabolic potential of two novel Asgardarchaeota lineages

Citation
Sun et al. (2021). ISME Communications 1 (1)
Names
Ca. Borrarchaeum weybense “Jordiarchaeum” “Jordiarchaeum madagascariense” “Sifarchaeaceae” “Jordiarchaeaceae” “Sifarchaeales” “Jordiarchaeales” “Sifarchaeia” “Jordiarchaeia” “Borrarchaeaceae” Ca. Borrarchaeum “Sifarchaeum” Ca. Sifarchaeum marinoarchaea Ca. Sifarchaeum subterraneus “Sifarchaeota”
Abstract
AbstractAsgardarchaeota have been proposed as the closest living relatives to eukaryotes, and a total of 72 metagenome-assembled genomes (MAGs) representing six primary lineages in this archaeal phylum have thus far been described. These organisms are predicted to be fermentative heterotrophs contributing to carbon cycling in sediment ecosystems. Here, we double the genomic catalogue of Asgardarchaeota by obtaining 71 MAGs from a range of habitats around the globe, including the deep subsurface,