Search results
273


Spirochaete genome identified in red abalone sample represents a novel genus Candidatus Haliotispira gen. nov. within the order Spirochaetales

Citation
Sharma et al. (2024). International Journal of Systematic and Evolutionary Microbiology 74 (1)
Names
Ca. Haliotispira Ca. Haliotispira prima
Abstract
A fully assembled spirochaete genome was identified as a contaminating scaffold in our red abalone (Haliotis rufescens) genome assembly. In this paper, we describe the analysis of this bacterial genome. The assembled spirochaete genome is 3.25 Mb in size with 48.5 mol% G+C content. The proteomes of 38 species were compared with the spirochaete genome and it was discovered to form an independent branch within the family Spirochaetaceae

The best of both worlds: a proposal for further integration of Candidatus names into the International Code of Nomenclature of Prokaryotes

Citation
Arahal et al. (2024). International Journal of Systematic and Evolutionary Microbiology 74 (1)
Names
Abstract
The naming of prokaryotes is governed by the International Code of Nomenclature of Prokaryotes (ICNP) and partially by the International Code of Nomenclature for Algae, Fungi and Plants (ICN). Such codes must be able to determine names of taxa in a universal and unambiguous manner, thus serving as a common language across different fields and activities. This unity is undermined when a new code of nomenclature emerges that overlaps in scope with an established, time-tested code and uses the same

Candidatus Kirkpatrickella diaphorinae gen. nov., sp. nov., an uncultured endosymbiont identified in a population of Diaphorina citri from Hawaii

Citation
Henry et al. (2023). International Journal of Systematic and Evolutionary Microbiology 73 (11)
Names
Ca. Carsonella ruddii Ca. Kirkpatrickella diaphorinae Ca. Profftella armatura
Abstract
Diaphorina citri is the hemipteran pest and vector of a devastating bacterial pathogen of citrus worldwide. In addition to the two core bacterial endosymbionts of D. citri, Candidatus Carsonella ruddii and Candidatus Profftella armatura, the genome of a novel endosymbiont and as of yet undescribed microbe was discovered in a Hawaiian D. citri population through deep sequencing of multiple D. citri populations. Found to be closely related to the genus

Valid publication of four additional phylum names

Citation
Göker, Oren (2023). International Journal of Systematic and Evolutionary Microbiology 73 (9)
Names
“Methanofastidiosia” Thermococci Methanonatronarchaeia Methanoliparia Halobacteria Archaeoglobi
Abstract
The International Code of Nomenclature of Prokaryotes (ICNP) now includes the phylum category. For the purpose of the valid publication of their names under the ICNP, we consider here four phyla. Slightly modified descriptions of ‘ Abditibacteriota ’ Tahon et al. 2018 and ‘ Desulfobacterota ’ Waite et al. 2020 are provided to

Genome-wide and constrained ordination-based analyses of EC code data support reclassification of the species of Massilia La Scola et al. 2000 into Telluria Bowman et al. 1993, Mokoshia gen. nov. and Zemynaea gen. nov

Citation
Bowman (2023). International Journal of Systematic and Evolutionary Microbiology 73 (8)
Names
Zemynaea
Abstract
Based on genome-wide data, Massilia species belonging to the clade including Telluria mixta LMG 11547T should be entirely transferred to the genus Telluria owing to the nomenclatural priority of the type species

Aristaeella hokkaidonensis gen. nov. sp. nov. and Aristaeella lactis sp. nov., two rumen bacterial species of a novel proposed family, Aristaeellaceae fam. nov

Citation
Mahoney-Kurpe et al. (2023). International Journal of Systematic and Evolutionary Microbiology 73 (5)
Names
Aristaeellaceae
Abstract
Two strains of Gram-negative, anaerobic, rod-shaped bacteria, from an abundant but uncharacterized rumen bacterial group of the order ‘Christensenellales’, were phylogenetically and phenotypically characterized. These strains, designated R-7T and WTE2008T, shared 98.6–99.0 % sequence identity between their 16S rRNA gene sequences. R-7T and WTE2008T clustered together on a distinct branch from other Christensenellaceae

Naming genera after geographical locations. Proposal to emend Appendix 9 of the International Code of Nomenclature of Prokaryotes

Citation
Oren, Chuvochina (2023). International Journal of Systematic and Evolutionary Microbiology 73 (5)
Names
Macondimonas Kapaibacterium
Abstract
Appendix 9, Section E of the International Code of Nomenclature of Prokaryotes provides guidelines on how to form adjectival specific and subspecific epithets that reflect the geographical location where the organism was found or studied. It does not mention ways of naming genera after geographical locations. We here propose emendation of Appendix 9 with the recommendations on how to form such names. Comments on the implementation of the current wording of Appendix 9, Section E are also made.

Candidatus List. Lists of names of prokaryotic Candidatus phyla

Citation
Oren, Göker (2023). International Journal of Systematic and Evolutionary Microbiology 73 (5)
Names
“Caldatribacteriota” “Caldipriscota” “Calescibacteriota” “Canglongiota” “Deferrimicrobiota” “Dormiibacterota” Eremiobacterota “Fermentibacterota” “Fervidibacterota” “Freyrarchaeota” “Geothermarchaeota” “Heilongiota” “Hermodarchaeota” “Hinthialibacterota” “Huberarchaeota” “Hydrogenedentota” “Hydrothermota” “Iainarchaeota” “Kapaibacteriota” “Krumholzibacteriota” “Kryptoniota” “Kerfeldiibacteriota” “Komeiliibacteriota” “Levyibacteriota” “Lindowiibacteriota” “Liptoniibacteriota” “Lloydiibacteriota” “Magasanikiibacteriota” “Margulisiibacteriota” “Martarchaeota” “Melainobacteriota” “Moissliibacteriota” “Montesoliibacteriota” “Nealsoniibacteriota” “Nezhaarchaeota” “Niyogiibacteriota” “Nomuraibacteriota” “Pacearchaeota” “Peregrinibacteriota” “Poribacteriota” “Portnoyibacteriota” “Ratteibacteriota” “Raymondiibacteriota” “Roizmaniibacteriota” “Rokuibacteriota” “Ryaniibacteriota” “Saganiibacteriota” “Schekmaniibacteriota” “Spechtiibacteriota” “Stahliibacteriota” “Staskawicziibacteriota” “Sungiibacteriota” “Tagaibacteriota” “Tayloriibacteriota” “Tectimicrobiota” “Terryibacteriota” “Torokiibacteriota” “Uhriibacteriota” “Vebleniibacteriota” “Wolfeibacteriota” “Woykeibacteriota” “Yanofskyibacteriota” “Yonathiibacteriota” “Zambryskiibacteriota” “Abawacaibacteriota” “Augarchaeota” “Lokiarchaeota” “Macinerneyibacteriota” “Methanomethylicota” “Moduliflexota” “Nanohalarchaeota” “Neomarinimicrobiota” “Odinarchaeota” “Paceibacterota” “Parcunitrobacterota” “Parvarchaeota” “Poseidoniota” “Qinglongiota” “Saccharimonadota” “Sifarchaeota” “Sumerlaeota” “Tianyaibacteriota” “Undinarchaeota” “Wukongarchaeota” “Babelota” “Wirthibacterota” “Rifleibacteriota” “Joergenseniibacteriota” “Kueneniibacteriota” “Jacksoniibacteriota” “Moraniibacteriota” “Shapirobacteriota” “Zixiibacteriota” Cloacimonadota Muiribacteriota “Latescibacterota” “Acetithermota” “Aenigmatarchaeota” “Aerophobota” “Altiarchaeota” “Altimarinota” “Aminicenantota”
Abstract