Chen, Gao


Publications
4

Sustained bacterial N2O reduction at acidic pH

Citation
He et al. (2024). Nature Communications 15 (1)
Names
Desulfosporosinus nitrosoreducens
Abstract
AbstractNitrous oxide (N2O) is a climate-active gas with emissions predicted to increase due to agricultural intensification. Microbial reduction of N2O to dinitrogen (N2) is the major consumption process but microbial N2O reduction under acidic conditions is considered negligible, albeit strongly acidic soils harbor nosZ genes encoding N2O reductase. Here, we study a co-culture derived from acidic tropical forest soil that reduces N2O at pH 4.5. The co-culture exhibits bimodal growth with a Ser

Dehalogenation of Chlorinated Ethenes to Ethene by a Novel Isolate, “ Candidatus Dehalogenimonas etheniformans”

Citation
Chen et al. (2022). Applied and Environmental Microbiology 88 (12)
Names
Ca. Dehalogenimonas etheniformans
Abstract
Chlorinated ethenes are risk drivers at many contaminated sites, and current bioremediation efforts focus on organohalide-respiring Dehalococcoides mccartyi strains to achieve detoxification. We isolated and characterized the first non- Dehalococcoides bacterium, “ Candidatus Dehalogenimonas etheniformans” strain GP, capable of metabolic reductive dechlorination of TCE, all DCE isomers, and VC to environmentally

Genome Sequence of “ Candidatus Dehalogenimonas etheniformans” Strain GP, a Vinyl Chloride-Respiring Anaerobe

Citation
Yang et al. (2020). Microbiology Resource Announcements 9 (50)
Names
Ca. Dehalogenimonas etheniformans
Abstract
“ Candidatus Dehalogenimonas etheniformans” strain GP couples growth with the reductive dechlorination of vinyl chloride and several polychlorinated ethenes. The genome sequence comprises a circular 2.07-Mb chromosome with a G+C content of 51.9% and harbors 50 putative reductive dehalogenase genes.