Greening, Chris


Publications
4

Asgard archaea modulate potential methanogenesis substrates in wetland soil

Citation
Valentin-Alvarado et al. (2024). Nature Communications 15 (1)
Names
Freyarchaeum deiterrae Ts Atabeyarchaeum deiterrae Ts Atabeyarchaeia Atabeyarchaeum Freyarchaeum Atabeyarchaeaceae Atabeyarchaeales Freyarchaeaceae Freyarchaeales Freyarchaeia
Abstract
AbstractThe roles of Asgard archaea in eukaryogenesis and marine biogeochemical cycles are well studied, yet their contributions in soil ecosystems remain unknown. Of particular interest are Asgard archaeal contributions to methane cycling in wetland soils. To investigate this, we reconstructed two complete genomes for soil-associated Atabeyarchaeia, a new Asgard lineage, and a complete genome of Freyarchaeia, and predicted their metabolism in situ. Metatranscriptomics reveals expression of gene

Multiple energy sources and metabolic strategies sustain microbial diversity in Antarctic desert soils

Citation
Ortiz et al. (2021). Proceedings of the National Academy of Sciences 118 (45)
Names
“Ca. Aridivita willemsiae” “Ca. Aridivita” “Ca. Aridivitaceae” Ca. Aridivitales Ca. Aridivitia
Abstract
Significance Diverse microbial life has been detected in the cold desert soils of Antarctica once thought to be barren. Here, we provide metagenomic, biogeochemical, and culture-based evidence that Antarctic soil microorganisms are phylogenetically and functionally distinct from those in other soils and adopt various metabolic and ecological strategies. The most abundant community members are metabolically versatile aerobes that use ubiquitous atmospheric trace gases to potentially mee

A genome compendium reveals diverse metabolic adaptations of Antarctic soil microorganisms

Citation
Ortiz et al. (2020).
Names
“Ca. Aridivita willemsiae”
Abstract
AbstractA surprising diversity and abundance of microorganisms resides in the cold desert soils of Antarctica. The metabolic processes that sustain them, however, are poorly understood. In this study, we used metagenomic and biogeochemical approaches to study the microbial communities in 16 physicochemically diverse mountainous and glacial soils from remote sites in South Victoria Land, north of the Mackay Glacier. We assembled 451 metagenome-assembled genomes from 18 bacterial and archaeal phyl