Liu, Jun


Publications
4

Insights on adaptive strategies and evolution of cable bacteria in saline lakes

Citation
Hu et al. (2025). Limnology and Oceanography
Names
Electronema haixiense Electronema qinghaiense Electrothrix gahaiensis
Abstract
Abstract Cable bacteria are filamentous microorganisms capable of centimeter‐scale electron transport, which have great impacts on sediment biogeochemistry, especially oxygen consumption and sulfide depletion. While 16S rRNA sequences related to known cable bacteria have been identified in saline lakes, their genomic diversity, metabolic potentials, and evolution remain unknown. Eight cable bacteria genomes were retrieved from 23 sediment metagenomes across
Text

Desertivirga arenae gen. nov., sp. nov. and Desertivirga brevis sp. nov., isolated from desert soil, and reclassification of Pedobacter xinjiangensis as Desertivirga xinjiangensis comb. nov. and Pedobacter mongoliensis as Paradesertivirga mongoliensis gen.nov., comb. nov

Citation
Li et al. (2024). International Journal of Systematic and Evolutionary Microbiology 74 (5)
Names
Paradesertivirga Desertivirga
Abstract
Two novel bacterial strains, designated as SYSU D00823T and SYSU D00873T, were isolated from sandy soil of the Gurbantunggut Desert in Xinjiang, north-west China. SYSU D00823T and SYSU D00873T shared 99.0 % 16S rRNA gene sequence identity, and were both most closely related to Pedobacter xinjiangensis 12157T with 96.1 % and 96.0 % similarities, respectively. Phylogenetic and phylogenomic analyses revealed that the two isolates and P. xinjiangensis 12157T formed a separate distinct cluster in a s
Text

Genomic Insights into the Ecological Role and Evolution of a Novel Thermoplasmata Order, “ Candidatus Sysuiplasmatales”

Citation
Yuan et al. (2021). Applied and Environmental Microbiology 87 (22)
Names
Ca. Sysuiplasmatales
Abstract
A wide array of archaea populate Earth’s extreme environments; therefore, they may play important roles in mediating biogeochemical processes such as iron and sulfur cycling. However, our knowledge of archaeal biology and evolution is still limited considering that the majority of the archaeal diversity is uncultured.

Insights into ecological role of a new deltaproteobacterial order Candidatus Acidulodesulfobacterales by metagenomics and metatranscriptomics

Citation
Tan et al. (2019). The ISME Journal 13 (8)
Names
“Acidulidesulfobacterium acidiphilum” “Acidulidesulfobacterium ferriphilum” “Acididesulfobacter guangdongensis” “Acididesulfobacter diazotrophicus” “Acididesulfobacter” “Acidulidesulfobacteriaceae” “Acidulidesulfobacteriales” “Acidulidesulfobacterium”
Abstract
Abstract Several abundant but yet uncultivated bacterial groups exist in extreme iron- and sulfur-rich environments, and the physiology, biodiversity, and ecological roles of these bacteria remain a mystery. Here we retrieved four metagenome-assembled genomes (MAGs) from an artificial acid mine drainage (AMD) system, and propose they belong to a new deltaproteobacterial order, Candidatus Acidulodesulfobacterales. The distribution pattern of Ca. Acidulodesulfobacterales in AMDs acr
Text