Li, Wen-Jun


Publications
26

An essential role for tungsten in the ecology and evolution of a previously uncultivated lineage of anaerobic, thermophilic Archaea

Citation
Buessecker et al. (2022). Nature Communications 13 (1)
Names
Wolframiiraptor gerlachensis Ts Wolframiiraptor Wolframiiraptoraceae Benthortus lauensis Ts Geocrenenecus dongiae Ts Geocrenenecus arthurdayi Geocrenenecus huangii Terraquivivens ruidianensis Terraquivivens tengchongensis Terraquivivens yellowstonensis Benthortus Geocrenenecus Terraquivivens Terraquivivens tikiterensis Ts Wolframiiraptor sinensis Wolframiiraptor allenii
Abstract
AbstractTrace metals have been an important ingredient for life throughout Earth’s history. Here, we describe the genome-guided cultivation of a member of the elusive archaeal lineage Caldarchaeales (syn. Aigarchaeota), Wolframiiraptor gerlachensis, and its growth dependence on tungsten. A metagenome-assembled genome (MAG) of W. gerlachensis encodes putative tungsten membrane transport systems, as well as pathways for anaerobic oxidation of sugars probably mediated by tungsten-dependent ferredox

Taxonomic note on the family Pseudonocardiaceae based on phylogenomic analysis and descriptions of Allosaccharopolyspora gen. nov. and Halosaccharopolyspora gen. nov

Citation
Teo et al. (2021). International Journal of Systematic and Evolutionary Microbiology 71 (10)
Names
Bounagaea Pseudonocardiaceae Amycolatopsis Actinoalloteichus cyanogriseus T Actinoalloteichus Actinoalloteichus caeruleus
Abstract
The taxonomic positions of members within the family Pseudonocardiaceae were assessed based on phylogenomic trees reconstructed using core-proteome and genome blast distance phylogeny approaches. The closely clustered genome sequences from the type strains of validly published names within the family Pseudonocardiaceae wer

Comparative Genomics Reveals Thermal Adaptation and a High Metabolic Diversity in “ Candidatus Bathyarchaeia”

Citation
Qi et al. (2021). mSystems 6 (4)
Names
Bathyarchaeia
Abstract
Ca . Bathyarchaeia MAGs from terrestrial hot spring habitats are poorly revealed, though they have been studied extensively in marine ecosystems.

Deciphering Symbiotic Interactions of “ Candidatus Aenigmarchaeota” with Inferred Horizontal Gene Transfers and Co-occurrence Networks

Citation
Li et al. (2021). mSystems 6 (4)
Names
Ca. Aenigmarchaeota
Abstract
Recent advances in sequencing technology promoted the blowout discovery of super tiny microbes in the Diapherotrites , Parvarchaeota , Aenigmarchaeota , Nanoarchaeota , and Nanohaloarchaeota (DPANN) superphylum. However, the unculturable properties of the majority of microbes impeded our investigation of their behavior and symbiotic lifestyle in the corresponding c

Genomic Insights of “Candidatus Nitrosocaldaceae” Based on Nine New Metagenome-Assembled Genomes, Including “Candidatus Nitrosothermus” Gen Nov. and Two New Species of “Candidatus Nitrosocaldus”

Citation
Luo et al. (2021). Frontiers in Microbiology 11
Names
Ca. Nitrosocaldaceae “Nitrosocaldales” Ca. Nitrosocaldus Ca. Nitrosothermus
Abstract
“Candidatus Nitrosocaldaceae” are globally distributed in neutral or slightly alkaline hot springs and geothermally heated soils. Despite their essential role in the nitrogen cycle in high-temperature ecosystems, they remain poorly understood because they have never been isolated in pure culture, and very few genomes are available. In the present study, a metagenomics approach was employed to obtain “Ca. Nitrosocaldaceae” metagenomic-assembled genomes (MAGs) from hot spring samples collected fro

Amycolatopsis anabasis sp. nov., a novel endophytic actinobacterium isolated from roots of Anabasis elatior

Citation
Wang et al. (2020). International Journal of Systematic and Evolutionary Microbiology 70 (5)
Names
Amycolatopsis anabasis
Abstract
A novel endophytic actinobacterium, designated strain EGI 650086T, was isolated from the roots of Anabasis elatior (C.A.Mey.) Schischk. collected in Xinjiang, north-west China. The taxonomic position of the strain was investigated using a polyphasic taxonomic approach. Growth occurred at 15–40 °C, pH 6.0–8.0 and in the presence of 0–6 % NaCl (w/v). Phylogenetic analysis based on 16S rRNA gene sequence and concatenation of 22 protein marker genes revealed that strain EGI 650086T formed a monophyl

Deciphering symbiotic interactions of ‘Candidatus Aenigmarchaeota’ with inferred horizontal gene transfers and co-occurrence networks

Citation
Li et al. (2020).
Names
Ca. Aenigmarchaeota
Abstract
Abstract Background: ‘Ca. Aenigmarchaeota’ represents an evolutionary branch within the DPANN superphylum. However, their ecological roles and potential host-symbiont interactions are poorly understood.Results: Here, we analyze eight metagenomic-assembled genomes from hot spring habitats and reveal their functional potentials. Although they have limited metabolic capacities, they harbor substantial carbohydrate metabolizing abilities. Further investigation suggests that horizontal gene t

Update on the classification of higher ranks in the phylum Actinobacteria

Citation
Salam et al. (2020). International Journal of Systematic and Evolutionary Microbiology 70 (2)
Names
Jatrophihabitantales Actinomycetia Pseudonocardiaceae Amycolatopsis
Abstract
Genome analysis is one of the main criteria for description of new taxa. Availability of genome sequences for all the actinobacteria with a valid nomenclature will, however, require another decade’s works of sequencing. This paper describes the rearrangement of the higher taxonomic ranks of the members of the phylum ‘ Actinobacteria ’, using the phylogeny of 16S rRNA gene sequences and supported by the phylogen

Insights into the ecological roles and evolution of methyl-coenzyme M reductase-containing hot spring Archaea

Citation
Hua et al. (2019). Nature Communications 10 (1)
Names
Ca. Methanoproducendum senex
Abstract
Abstract Several recent studies have shown the presence of genes for the key enzyme associated with archaeal methane/alkane metabolism, methyl-coenzyme M reductase (Mcr), in metagenome-assembled genomes (MAGs) divergent to existing archaeal lineages. Here, we study the mcr-containing archaeal MAGs from several hot springs, which reveal further expansion in the diversity of archaeal organisms performing methane/alkane metabolism. Significantly, an MAG basal to organisms from the phy