Li, Wen-Jun


Publications
36

Cultivation of novel Atribacterota from oil well provides new insight into their diversity, ecology, and evolution in anoxic, carbon-rich environments

Citation
Jiao et al. (2024). Microbiome 12 (1)
Names
“Immundihabitans” “Immundihabitans aquiphilus” “Sediminicultor” “Sediminicultor quartus” Thermatribacter Thermatribacteraceae
Abstract
Abstract Background The Atribacterota are widely distributed in the subsurface biosphere. Recently, the first Atribacterota isolate was described and the number of Atribacterota genome sequences retrieved from environmental samples has increased significantly; however, their diversity, physiology, ecology, and evolution remain poorly understood. Results We report the isolation of the second member of Atribacterota, Th
Text

Desertivirga arenae gen. nov., sp. nov. and Desertivirga brevis sp. nov., isolated from desert soil, and reclassification of Pedobacter xinjiangensis as Desertivirga xinjiangensis comb. nov. and Pedobacter mongoliensis as Paradesertivirga mongoliensis gen.nov., comb. nov

Citation
Li et al. (2024). International Journal of Systematic and Evolutionary Microbiology 74 (5)
Names
Paradesertivirga Desertivirga
Abstract
Two novel bacterial strains, designated as SYSU D00823T and SYSU D00873T, were isolated from sandy soil of the Gurbantunggut Desert in Xinjiang, north-west China. SYSU D00823T and SYSU D00873T shared 99.0 % 16S rRNA gene sequence identity, and were both most closely related to Pedobacter xinjiangensis 12157T with 96.1 % and 96.0 % similarities, respectively. Phylogenetic and phylogenomic analyses revealed that the two isolates and P. xinjiangensis 12157T formed a separate distinct cluster in a s
Text

Reversed oxidative TCA (roTCA) for carbon fixation by an Acidimicrobiia strain from a saline lake

Citation
Gao et al. (2024). The ISME Journal 18 (1)
Names
Salinilacustrithrix Salinilacustritrichaceae
Abstract
Abstract Acidimicrobiia are widely distributed in nature and suggested to be autotrophic via the Calvin–Benson–Bassham (CBB) cycle. However, direct evidence of chemolithoautotrophy in Acidimicrobiia is lacking. Here, we report a chemolithoautotrophic enrichment from a saline lake, and the subsequent isolation and characterization of a chemolithoautotroph, Salinilacustristhrix flava EGI L10123T, which belongs to a new Acidimicrobiia family. Although strain EGI L10123T is autotrophi
Text

Temperature, pH, and oxygen availability contributed to the functional differentiation of ancient Nitrososphaeria

Citation
Luo et al. (2024). The ISME Journal 18 (1)
Names
“UBA164”
Abstract
Abstract Ammonia-oxidizing Nitrososphaeria are among the most abundant archaea on Earth and have profound impacts on the biogeochemical cycles of carbon and nitrogen. In contrast to these well-studied ammonia-oxidizing archaea (AOA), deep-branching non-AOA within this class remain poorly characterized because of a low number of genome representatives. Here, we reconstructed 128 Nitrososphaeria metagenome-assembled genomes from acid mine drainage and hot spring sediment metagenomes
Text

Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes

Citation
Eme et al. (2023). Nature 618 (7967)
Names
Asgardarchaeota “Njordarchaeia” “Njordarchaeales” “Hodarchaeaceae” “Hodarchaeales”
Abstract
Abstract In the ongoing debates about eukaryogenesis—the series of evolutionary events leading to the emergence of the eukaryotic cell from prokaryotic ancestors—members of the Asgard archaea play a key part as the closest archaeal relatives of eukaryotes 1 . However, the nature and phylogenetic identity of the last common ancestor of Asgard archaea and eukaryotes remain unresolved 2–4
Text

Metagenomic Discovery of “ Candidatus Parvarchaeales”-Related Lineages Sheds Light on Adaptation and Diversification from Neutral-Thermal to Acidic-Mesothermal Environments

Citation
Rao et al. (2023). mSystems 8 (2)
Names
13 Names
Abstract
“ Candidatus Parvarchaeales” microbes may represent a lineage uniquely distributed in extreme environments such as AMD and hot springs. However, little is known about the strategies and processes of how they adapted to these extreme environments.

Hyperactive nanobacteria with host-dependent traits pervade Omnitrophota

Citation
Seymour et al. (2023). Nature Microbiology 8 (4)
Names
89 Names
Abstract
AbstractCandidate bacterial phylum Omnitrophota has not been isolated and is poorly understood. We analysed 72 newly sequenced and 349 existing Omnitrophota genomes representing 6 classes and 276 species, along with Earth Microbiome Project data to evaluate habitat, metabolic traits and lifestyles. We applied fluorescence-activated cell sorting and differential size filtration, and showed that most Omnitrophota are ultra-small (~0.2 μm) cells that are found in water, sediments and soils. Omnitro
Text

Metagenomic discovery ofCandidatusParvarchaeales related lineages sheds light on the adaptation and diversification from neutral-thermal to acidic-mesothermal environments

Citation
Rao et al. (2022).
Names
11 Names
Abstract
AbstractCandidatusParvarchaeales, representing a DPANN archaeal group with limited metabolic potentials and reliance on hosts for their growth, were initially found in acid mine drainage (AMD). Due to the lack of representatives, however, their ecological roles and adaptation to extreme habitats such as AMD, as well as how they diverge across the lineage remain largely unexplored. By applying genome-resolved metagenomics, 28Parvarchaeales-associated metagenome-assembled genomes (MAGs) representi
Text