The ISME Journal


Publications
81

Closed genomes uncover a saltwater species of Candidatus Electronema and shed new light on the boundary between marine and freshwater cable bacteria

Citation
Sereika et al. (2023). The ISME Journal 17 (4)
Names
Electronema halotolerans Electrothrix laxa Electronema Electronema aureum Ts Electrothrix Electrothrix gigas Electrothrix arhusiensis Electrothrix communis Ts
Abstract
AbstractCable bacteria of theDesulfobulbaceaefamily are centimeter-long filamentous bacteria, which are capable of conducting long-distance electron transfer. Currently, all cable bacteria are classified into two candidate genera:CandidatusElectronema, typically found in freshwater environments, andCandidatusElectrothrix, typically found in saltwater environments. This taxonomic framework is based on both 16S rRNA gene sequences and metagenome-assembled genome (MAG) phylogenies. However, most of

Cave Thiovulum (Candidatus Thiovulum stygium) differs metabolically and genomically from marine species

Citation
Bizic et al. (2023). The ISME Journal 17 (3)
Names
Ca. Thiovulum karukerense Ca. Thiovulum stygium Ca. Thiovulum imperiosus
Abstract
AbstractThiovulum spp. (Campylobacterota) are large sulfur bacteria that form veil-like structures in aquatic environments. The sulfidic Movile Cave (Romania), sealed from the atmosphere for ~5 million years, has several aqueous chambers, some with low atmospheric O2 (~7%). The cave’s surface-water microbial community is dominated by bacteria we identified as Thiovulum. We show that this strain, and others from subsurface environments, are phylogenetically distinct from marine Thiovulum. We asse

Genomic diversity and biosynthetic capabilities of sponge-associated chlamydiae

Citation
Dharamshi et al. (2022). The ISME Journal 16 (12)
Names
“Parasimkaniaceae”
Abstract
AbstractSponge microbiomes contribute to host health, nutrition, and defense through the production of secondary metabolites.Chlamydiae, a phylum of obligate intracellular bacteria ranging from animal pathogens to endosymbionts of microbial eukaryotes, are frequently found associated with sponges. However, sponge-associated chlamydial diversity has not yet been investigated at the genomic level and host interactions thus far remain unexplored. Here, we sequenced the microbiomes of three sponge s

Microbial communities of Auka hydrothermal sediments shed light on vent biogeography and the evolutionary history of thermophily

Citation
Speth et al. (2022). The ISME Journal 16 (7)
Names
“Tharpellaceae” “Tharpella” “Tharpella aukensis”
Abstract
Abstract Hydrothermal vents have been key to our understanding of the limits of life, and the metabolic and phylogenetic diversity of thermophilic organisms. Here we used environmental metagenomics combined with analysis of physicochemical data and 16S rRNA gene amplicons to characterize the sediment-hosted microorganisms at the recently discovered Auka vents in the Gulf of California. We recovered 325 metagenome assembled genomes (MAGs) representing 54 phyla, over 30% of those cu

The novel genus, ‘Candidatus Phosphoribacter’, previously identified as Tetrasphaera, is the dominant polyphosphate accumulating lineage in EBPR wastewater treatment plants worldwide

Citation
Singleton et al. (2022). The ISME Journal 16 (6)
Names
“Phosphoribacter hoenirii” “Phosphoribacter freyrii” “Phosphoribacter thorii” Phosphoribacter baldrii Ts Phosphoribacter hodrii “Phosphoribacter tyrii” Ca. Lutibacillus Phosphoribacter
Abstract
Abstract The bacterial genus Tetrasphaera encompasses abundant polyphosphate accumulating organisms (PAOs) that are responsible for enhanced biological phosphorus removal (EBPR) in wastewater treatment plants. Recent analyses of genomes from pure cultures revealed that 16S rRNA genes cannot resolve the lineage, and that Tetrasphaera spp. are from several different genera within the Dermatophilaceae. Here, we examine 14 recently recovered high-quality metagenome-assembled genomes f

Niche partitioning of the ubiquitous and ecologically relevant NS5 marine group

Citation
Priest et al. (2022). The ISME Journal 16 (6)
Names
“Marisimplicoccus framensis” “Marisimplicoccus” “Marivariicella” “Marivariicella framensis” “Maricapacicella” “Maricapacicella forsetii” “Arcticimaribacter” “Arcticimaribacter forsetii”
Abstract
AbstractNiche concept is a core tenet of ecology that has recently been applied in marine microbial research to describe the partitioning of taxa based either on adaptations to specific conditions across environments or on adaptations to specialised substrates. In this study, we combine spatiotemporal dynamics and predicted substrate utilisation to describe species-level niche partitioning within the NS5 Marine Group. Despite NS5 representing one of the most abundant marine flavobacterial clades

Niche differentiation of sulfur-oxidizing bacteria (SUP05) in submarine hydrothermal plumes

Citation
Dede et al. (2022). The ISME Journal 16 (6)
Names
Ca. Thioglobus plumae Ca. Thioglobus vadi Ca. Thioglobus vulcanius
Abstract
AbstractHydrothermal plumes transport reduced chemical species and metals into the open ocean. Despite their considerable spatial scale and impact on biogeochemical cycles, niche differentiation of abundant microbial clades is poorly understood. Here, we analyzed the microbial ecology of two bathy- (Brothers volcano; BrV-cone and northwest caldera; NWC) and a mesopelagic (Macauley volcano; McV) plumes on the Kermadec intra-oceanic arc in the South Pacific Ocean. The microbial community structure

Verrucomicrobiota are specialist consumers of sulfated methyl pentoses during diatom blooms

Citation
Orellana et al. (2022). The ISME Journal 16 (3)
Names
“Seribacter sulfatis” “Fucivorax forsetii” “Fucivorax” “Mariakkermansia forsetii” “Mariakkermansia” “Chordibacter forsetii”
Abstract
AbstractMarine algae annually sequester petagrams of carbon dioxide into polysaccharides, which are a central metabolic fuel for marine carbon cycling. Diatom microalgae produce sulfated polysaccharides containing methyl pentoses that are challenging to degrade for bacteria compared to other monomers, implicating these sugars as a potential carbon sink. Free-living bacteria occurring in phytoplankton blooms that specialise on consuming microalgal sugars, containing fucose and rhamnose remain unk

Genomic evolution of the class Acidithiobacillia: deep-branching Proteobacteria living in extreme acidic conditions

Citation
Moya-Beltrán et al. (2021). The ISME Journal 15 (11)
Names
“Ambacidithiobacillus”
Abstract
AbstractMembers of the genus Acidithiobacillus, now ranked within the class Acidithiobacillia, are model bacteria for the study of chemolithotrophic energy conversion under extreme conditions. Knowledge of the genomic and taxonomic diversity of Acidithiobacillia is still limited. Here, we present a systematic analysis of nearly 100 genomes from the class sampled from a wide range of habitats. Some of these genomes are new and others have been reclassified on the basis of advanced genomic analysi