Publications
4437

Sort by date names
Browse by authors subjects journals

Prevalent Transmission of ‘Candidatus Liberibacter asiaticus’ over ‘Ca. Liberibacter americanus’ in a Long-Term Controlled Environment

Citation
Gasparoto et al. (2022). Phytopathology® 112 (1)
Names
Ca. Liberibacter asiaticus Ca. Liberibacter americanus
Abstract
In Brazil, citrus huanglongbing (HLB) is associated with ‘Candidatus Liberibacter americanus’ (CLam) and ‘Ca. Liberibacter asiaticus’ (CLas). However, there are few studies about HLB epidemiology when both Liberibacter spp. and its insect vector, the Asian citrus psyllid (ACP, Diaphorina citri), are present. The objective of this work was to compare the transmission of HLB by ACP when both CLam and CLas are present as primary inoculum. Two experiments were performed under screenhouse conditions
Text

Candidatus Thiovulum sp. strain imperiosus: the largest free-living Epsilonproteobacteraeota Thiovulum strain lives in a marine mangrove environment

Citation
Sylvestre et al. (2022). Canadian Journal of Microbiology 68 (1)
Names
Ca. Thiovulum imperiosus
Abstract
A large (47.75 ± 3.56 µm in diameter) Thiovulum bacterial strain forming white veils is described from a marine mangrove ecosystem. High sulfide concentrations (up to 8 mM of H2S) were measured on sunken organic matter (wood/bone debris) under laboratory conditions. This sulfur-oxidizing bacterium colonized the organic matter, forming a white veil. According to conventional scanning electron microscope (SEM) observations, bacterial cells are ovoid and slightly motile by numerous small flagella
Text

Transcriptome Profiling of ‘CandidatusLiberibacter asiaticus’ in Citrus and Psyllids

Citation
De Francesco et al. (2022). Phytopathology® 112 (1)
Names
Ca. Liberibacter asiaticus
Abstract
‘Candidatus Liberibacter asiaticus’ (Las) is an emergent bacterial pathogen that is associated with the devastating citrus huanglongbing (HLB). Vectored by the Asian citrus psyllid, Las colonizes the phloem tissue of citrus, causing severe damage to infected trees. So far, cultivating pure Las culture in axenic media has not been successful, and dual-transcriptome analyses aiming to profile gene expression in both Las and its hosts have a low coverage of the Las genome because of the low abundan
Text

First Report of ‘Candidatus Phytoplasma brasiliense’ in North America and in a New Host, Globe Sedge (Cyperus globulosus)

Citation
Di Lella et al. (2022). Plant Health Progress 23 (3)
Names
Ca. Phytoplasma brasiliense
Abstract
A survey of weeds was undertaken in a palm nursery affected by lethal bronzing (LB) to identify a reservoir host of the causal phytoplasma. Three common species were identified; Urochloa maxima (Guineagrass), Sporobolus indicus (smut grass), and Cyperus esculentus (yellow nutsedge) and sampled over a period of 2 years. Each species was sampled 36 times and all three species were negative for the LB phytoplasma. However, three specimens of C. esculentus tested positive for the phytoplasma specie
Text

Host Plant Adaptation Drives Changes inDiaphorina citriProteome Regulation, Proteoform Expression, and Transmission of ‘CandidatusLiberibacter asiaticus’, the Citrus Greening Pathogen

Citation
Ramsey et al. (2022). Phytopathology® 112 (1)
Names
Ca. Liberibacter asiaticus
Abstract
The Asian citrus psyllid (Diaphorina citri) is a pest of citrus and the primary insect vector of the bacterial pathogen, ‘Candidatus Liberibacter asiaticus’ (CLas), which is associated with citrus greening disease. The citrus relative Murraya paniculata (orange jasmine) is a host plant of D. citri but is more resistant to CLas compared with all tested Citrus genotypes. The effect of host switching of D. citri between Citrus medica (citron) and M. paniculata plants on the acquisition and transmis
Text

The Impact of Diaphorina citri-Vectored ‘Candidatus Liberibacter asiaticus’ on Citrus Metabolism

Citation
Padhi et al. (2022). Phytopathology® 112 (1)
Names
Ca. Liberibacter asiaticus
Abstract
‘Candidatus Liberibacter asiaticus’ is associated with the devastating citrus disease Huanglongbing (HLB). It is transmitted by grafting infected material to healthy plants and by the feeding of the Asian citrus psyllid (Diaphorina citri). Previously, we demonstrated that a metabolomics approach using proton-nuclear magnetic resonance spectroscopy discriminates healthy from diseased plants via grafting. This work assessed the capability of this technology in discriminating healthy and diseased
Text