Publications
4374

Sort by date names
Browse by authors subjects journals

Valid publication of names of two domains and seven kingdoms of prokaryotes

Citation
Göker, Oren (2024). International Journal of Systematic and Evolutionary Microbiology 74 (1)
Names
Bacteria Archaea
Abstract
The International Code of Nomenclature of Prokaryotes (ICNP) now includes the categories domain and kingdom. For the purpose of the valid publication of their names under the ICNP, we consider here the two known domains, ‘Bacteria’ and ‘Archaea’, as well as a number of taxa suitable for the rank of kingdom, based on previous phylogenetic and taxonomic studies. It is proposed to subdivide the domain Bacteria into the kingdoms Bacillati, Fusobacteriati, Pseudomonadati and Thermotogati. This arrang
Text

FlgI Is a Sec-Dependent Effector of Candidatus Liberibacter asiaticus That Can Be Blocked by Small Molecules Identified Using a Yeast Screen

Citation
Zuo et al. (2024). Plants 13 (2)
Names
Ca. Liberibacter asiaticus
Abstract
Huanglongbing (HLB) is one of the most devastating diseases of citrus worldwide. The phloem-restricted bacterium Candidatus Liberibacter asiaticus (CLas) is considered to be the main pathogen responsible for HLB. There is currently no effective practical strategy for the control of HLB. Our understanding of how pathogens cause HLB is limited because CLas has not been artificially cultured. In this study, 15 potential virulence factors were predicted from the proteome of CLas through DeepVF and P
Text

Sub-optimal temperatures lead to altered expression of stress-related genes and increased ‘Candidatus Liberibacter solanacearum’ accumulation in potato psyllid

Citation
Fisher et al. (2024). Frontiers in Insect Science 3
Names
“Liberibacter solanacearum”
Abstract
IntroductionThe potato psyllid Bactericera cockerelli is the insect vector of the fastidious bacterium ‘Candidatus Liberibacter solanacearum’. The bacterium infects both B. cockerelli and plant species, causing zebra chip (ZC) disease of potato and vein-greening disease of tomato. Temperatures are known to influence the initiation and progression of disease symptom in the host plant, and seasonal transitions from moderate to high temperatures trigger psyllid dispersal migration to facilitate sur
Text

Improving the Comprehension of Pathogenicity and Phylogeny in ‘Candidatus Phytoplasma meliae’ through Genome Characterization

Citation
Fernández et al. (2024). Microorganisms 12 (1)
Names
Ca. Phytoplasma meliae
Abstract
‘Candidatus Phytoplasma meliae’ is a pathogen associated with chinaberry yellowing disease, which has become a major phytosanitary problem for chinaberry forestry production in Argentina. Despite its economic impact, no genome information of this phytoplasma has been published, which has hindered its characterization at the genomic level. In this study, we used a metagenomics approach to analyze the draft genome of the ‘Ca. P. meliae’ strain ChTYXIII. The draft assembly consisted of twenty-one c
Text

Salinirarus marinus gen. nov., sp. nov., Haloplanus salilacus sp. nov., Haloplanus pelagicus sp. nov., Haloplanus halophilus sp. nov., and Haloplanus halobius sp. nov., halophilic archaea isolated from commercial coarse salts with potential as starter cultures for salt-fermented foods

Citation
Zhang et al. (2024). FEMS Microbiology Letters 371
Names
Salinirarus
Abstract
Abstract Five halophilic archaeal strains, XH8T, CK5-1T, GDY1T, HW8-1T, and XH21T, were isolated from commercial coarse salt produced in different regions of China. Their 16S rRNA and rpoB′ gene sequences indicated that four of the strains (CK5-1T, GDY1T, HW8-1T, and XH21T) represent distinct species within the genus Haloplanus (family Haloferacaceae), while strain XH8T represents a novel genus within the same family. These assignments were supported by phylogenetic and phylogenom
Text

Temperature, pH, and oxygen availability contributed to the functional differentiation of ancient Nitrososphaeria

Citation
Luo et al. (2024). The ISME Journal 18 (1)
Names
“UBA164”
Abstract
Abstract Ammonia-oxidizing Nitrososphaeria are among the most abundant archaea on Earth and have profound impacts on the biogeochemical cycles of carbon and nitrogen. In contrast to these well-studied ammonia-oxidizing archaea (AOA), deep-branching non-AOA within this class remain poorly characterized because of a low number of genome representatives. Here, we reconstructed 128 Nitrososphaeria metagenome-assembled genomes from acid mine drainage and hot spring sediment metagenomes
Text

Chlamydiae as symbionts of photosynthetic dinoflagellates

Citation
Maire et al. (2024). The ISME Journal 18 (1)
Names
Algichlamydia Algichlamydia australiensis Ts
Abstract
Abstract Chlamydiae are ubiquitous intracellular bacteria and infect a wide diversity of eukaryotes, including mammals. However, chlamydiae have never been reported to infect photosynthetic organisms. Here, we describe a novel chlamydial genus and species, Candidatus Algichlamydia australiensis, capable of infecting the photosynthetic dinoflagellate Cladocopium sp. (originally isolated from a scleractinian coral). Algichlamydia australiensis was confirmed to be intracellular by fl
Text

Tissue-associated and vertically transmitted bacterial symbiont in the coral Pocillopora acuta

Citation
Maire et al. (2024). The ISME Journal 18 (1)
Names
Sororendozoicomonas aggregata Ts Sororendozoicomonas
Abstract
Abstract Coral microhabitats are colonized by a myriad of microorganisms, including diverse bacteria which are essential for host functioning and survival. However, the location, transmission, and functions of individual bacterial species living inside the coral tissues remain poorly studied. Here, we show that a previously undescribed bacterial symbiont of the coral Pocillopora acuta forms cell-associated microbial aggregates (CAMAs) within the mesenterial filaments. CAMAs were f
Text

Ubiquitous genome streamlined Acidobacteriota in freshwater environments

Citation
Wong et al. (2024). ISME Communications 4 (1)
Names
Acidiparvus lacustris Ts Acidiparvus fluvialis Acidiparvus
Abstract
Abstract Acidobacteriota are abundant in soil, peatlands, and sediments, but their ecology in freshwater environments remains understudied. UBA12189, an Acidobacteriota genus, is an uncultivated, genome-streamlined lineage with a small genome size found in aquatic environments where detailed genomic analyses are lacking. Here, we analyzed 66 MAGs of UBA12189 (including one complete genome) from freshwater lakes and rivers in Europe, North America, and Asia. UBA12189 has small geno
Text