Search results
27


Asgard archaea capable of anaerobic hydrocarbon cycling

Citation
Seitz et al. (2019). Nature Communications 10 (1)
Names
Abstract
AbstractLarge reservoirs of natural gas in the oceanic subsurface sustain complex communities of anaerobic microbes, including archaeal lineages with potential to mediate oxidation of hydrocarbons such as methane and butane. Here we describe a previously unknown archaeal phylum, Helarchaeota, belonging to the Asgard superphylum and with the potential for hydrocarbon oxidation. We reconstruct Helarchaeota genomes from metagenomic data derived from hydrothermal deep-sea sediments in the hydrocarbo

Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system

Citation
Anantharaman et al. (2016). Nature Communications 7 (1)
Names
“Kerfeldiibacteriota” “Komeiliibacteriota” “Lindowiibacteriota” “Liptoniibacteriota” “Lloydiibacteriota” “Margulisiibacteriota” “Nealsoniibacteriota” “Niyogiibacteriota” “Portnoyibacteriota” “Raymondiibacteriota” “Ryaniibacteriota” “Schekmaniibacteriota” “Spechtiibacteriota” “Staskawicziibacteriota” “Sungiibacteriota” “Tagaibacteriota” “Tayloriibacteriota” “Terryibacteriota” “Vebleniibacteriota” “Yonathiibacteriota” “Zambryskiibacteriota” “Rifleibacteriota” “Ozemibacteria”
Abstract
AbstractThe subterranean world hosts up to one-fifth of all biomass, including microbial communities that drive transformations central to Earth’s biogeochemical cycles. However, little is known about how complex microbial communities in such environments are structured, and how inter-organism interactions shape ecosystem function. Here we apply terabase-scale cultivation-independent metagenomics to aquifer sediments and groundwater, and reconstruct 2,540 draft-quality, near-complete and complet

Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs

Citation
Eloe-Fadrosh et al. (2016). Nature Communications 7 (1)
Names
“Kryptoniota” Kryptonium thompsonii Ts Kryptonium “Chryseopegocella kryptomonas”
Abstract
AbstractAnalysis of the increasing wealth of metagenomic data collected from diverse environments can lead to the discovery of novel branches on the tree of life. Here we analyse 5.2 Tb of metagenomic data collected globally to discover a novel bacterial phylum (‘Candidatus Kryptonia’) found exclusively in high-temperature pH-neutral geothermal springs. This lineage had remained hidden as a taxonomic ‘blind spot’ because of mismatches in the primers commonly used for ribosomal gene surveys. Geno