Albertsen, Mads


Publications
17

Proposal of Patescibacterium danicum gen. Nov., sp. nov. in the ubiquitous ultrasmall bacterial phylum Patescibacteriota phyl. Nov

Citation
Dutkiewicz et al. (2024). ISME Communications
Names
“Patescibacterium danicum” Ca. Patescibacteria “Patescibacteriota” “Patescibacteriia” “Patescibacteriales” “Patescibacteriaceae” “Patescibacterium”
Abstract
Abstract Candidatus Patescibacteria is a diverse bacterial phylum that is notable for members with ultrasmall cell size, reduced genomes, limited metabolic capabilities and dependence on other prokaryotic hosts. Despite the prevalence of the name Ca. Patescibacteria in the scientific literature, it is not officially recognized under the International Code of Nomenclature of Prokaryotes (ICNP) and lacks a nomenclatural type. Here, we rectify this situation by describing two closely

Closed genomes uncover a saltwater species of Candidatus Electronema and shed new light on the boundary between marine and freshwater cable bacteria

Citation
Sereika et al. (2023). The ISME Journal 17 (4)
Names
Electronema halotolerans Electrothrix laxa Electronema Electronema aureum Ts Electrothrix Electrothrix gigas Electrothrix arhusiensis Electrothrix communis Ts
Abstract
AbstractCable bacteria of theDesulfobulbaceaefamily are centimeter-long filamentous bacteria, which are capable of conducting long-distance electron transfer. Currently, all cable bacteria are classified into two candidate genera:CandidatusElectronema, typically found in freshwater environments, andCandidatusElectrothrix, typically found in saltwater environments. This taxonomic framework is based on both 16S rRNA gene sequences and metagenome-assembled genome (MAG) phylogenies. However, most of

Closed genomes uncover a saltwater species ofCandidatusElectronema and shed new light on the boundary between marine and freshwater cable bacteria

Citation
Sereika et al. (2022).
Names
Abstract
AbstractCable bacteria of theDesulfobulbaceaefamily are centimeter-long filamentous bacteria, which are capable of conducting long-distance electron transfer. Currently, all cable bacteria are classified into two candidate genera:CandidatusElectronema, typically found in freshwater environments, andCandidatusElectrothrix, typically found in saltwater environments. This taxonomic framework is based on both 16S rRNA gene sequences and metagenome-assembled genome (MAG) phylogenies. However, most of

Correction: Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system

Citation
Sauder et al. (2020). The ISME Journal 14 (9)
Names
Ca. Nitrosocosmicus exaquare
Abstract
An amendment to this paper has been published and can be accessed via a link at the top of the paper.

Characterization of the First “ Candidatus Nitrotoga” Isolate Reveals Metabolic Versatility and Separate Evolution of Widespread Nitrite-Oxidizing Bacteria

Citation
Kitzinger et al. (2018). mBio 9 (4)
Names
Ca. Nitrotoga Ca. Nitrotoga fabula
Abstract
ABSTRACT Nitrification is a key process of the biogeochemical nitrogen cycle and of biological wastewater treatment. The second step, nitrite oxidation to nitrate, is catalyzed by phylogenetically diverse, chemolithoautotrophic nitrite-oxidizing bacteria (NOB). Uncultured NOB from the genus “ Candidatus Nitrotoga” are widespread in natural and engineered ecosystems. Knowledge about their biology is sparse, because no genomic information and no pure