Plant Science


Publications
825

Real-time on-site detection of the three ‘Candidatus Liberibacter’ species associated with HLB disease: a rapid and validated method

Citation
Morán et al. (2023). Frontiers in Plant Science 14
Names
Liberibacter
Abstract
Huanglongbing (HLB) is a devastating disease that affects all commercial citrus species worldwide. The disease is associated with bacteria of three species of the genus ‘Candidatus Liberibacter’ transmitted by psyllid vectors. To date, HLB has no cure, so preventing its introduction into HLB-free areas is the best strategy to control its spread. For that, the use of accurate, sensitive, specific, and reliable detection methods is critical for good integrated management of this serious disease. T

Microscopic and Transcriptomic Analyses of Early Events Triggered by ‘Candidatus Liberibacter asiaticus’ in Young Flushes of Huanglongbing-Positive Citrus Trees

Citation
Pandey et al. (2023). Phytopathology® 113 (6)
Names
Ca. Liberibacter asiaticus
Abstract
‘ Candidatus Liberibacter asiaticus’ (CLas) is associated with the devastating citrus disease Huanglongbing (HLB). Young flushes are the center of the HLB pathosystem due to their roles in the psyllid life cycle and in the acquisition and transmission of CLas. However, the early events of CLas infection and how CLas modulates young flush physiology remain poorly understood. Here, transmission electron microscopy analysis showed that the mean diameter of the sieve pores decreased in young leaves

Physiological Variables Influenced by ‘Candidatus Liberibacter asiaticus’ Infection in Two Citrus Species

Citation
Wu et al. (2023). Plant Disease 107 (6)
Names
Ca. Liberibacter asiaticus
Abstract
‘Candidatus Liberibacter asiaticus’ is the bacterium associated with the citrus disease known as huanglongbing (HLB). This study evaluated the influence of ‘Ca. L. asiaticus’ infection on a number of key plant physiological variables concerning photosynthesis, cell integrity, reactive oxygen species scavengers’ activity, and osmoregulation of two different species of citrus—the pomelo Citrus maxima and the mandarin C. reticulata ‘Tankan’—relative to their measured ‘Ca. L. asiaticus’ infection l

Development of a Loop-Mediated Isothermal Amplification (LAMP) Method to Detect the Potato Zebra Chip Pathogen ‘Candidatus Liberibacter solanacearum’ (Lso) and Differentiate Haplotypes A and B

Citation
Jiang et al. (2023). Plant Disease 107 (6)
Names
“Liberibacter solanacearum”
Abstract
‘Candidatus Liberibacter solanacearum’ (Lso) is the causal agent of zebra chip of potato (Solanum tuberosum), which can significantly reduce potato yield. In this study, a loop-mediated isothermal amplification (LAMP) method for the detection of Lso haplotypes A and B was developed and evaluated. Two sets of LAMP primers named LAMP-A and LAMP-B were designed and tested for specificity and sensitivity. Both LAMP-A and LAMP-B were specific to Lso in in silico analysis using the Primer-Blast tool.

The genome of Candidatus phytoplasma ziziphi provides insights into their biological characteristics

Citation
Xue et al. (2023). BMC Plant Biology 23 (1)
Names
Ca. Phytoplasma ziziphi
Abstract
AbstractPhytoplasmas are obligate cell wall-less prokaryotic bacteria that primarily multiply in plant phloem tissue. Jujube witches’ broom (JWB) associated with phytoplasma is a destructive disease of jujube (Ziziphus jujuba Mill.). Here we report the complete ‘Candidatus Phytoplasma ziziphi’ chromosome of strain Hebei-2018, which is a circular genome of 764,108-base pairs with 735 predicted CDS. Notably, extra 19,825 bp (from 621,995 to 641,819 bp) compared to the previously reported one compl

An effector of ‘Candidatus Liberibacter asiaticus’ manipulates autophagy to promote bacterial infection

Citation
Shi et al. (2023). Journal of Experimental Botany
Names
Ca. Liberibacter asiaticus
Abstract
Abstract Autophagy functions in plant host immunity responses to pathogen infection. The molecular mechanisms and functions used by the citrus Huanglongbing (HLB)-associated intracellular bacterium ‘Candidatus Liberibacter asiaticus’ (CLas) to manipulate autophagy are unknown. We identified a CLas effector, SDE4405 (CLIBASIA_04405), which contributes to HLB progression. ‘Wanjincheng’ orange (Citrus sinensis) transgenic plants expressing SDE4405 promotes CLas proliferation and symp