Microbiology


Publications
891

Phylogenic position and low genomic diversity of “Candidatus Rickettsia kotlanii” inferred by complete genome sequences of two Japanese isolates

Citation
Gotoh et al. (2023). Microbiology and Immunology 67 (6)
Names
Ca. Rickettsia kotlanii
Abstract
AbstractMany Rickettsia species of the spotted fever group (SFG) cause tick‐borne diseases known as “spotted fever.” One of the candidate SFG Rickettsia species is “Candidatus Rickettsia kotlanii,” which was first detected in Haemaphysalis concinna in Hungary in 2006. However, its precise phylogenetic position in the SFG is not clear because only single‐gene sequence–based phylogenetic analyses were performed using very limited genes. Here, we present the complete genome sequences of two Japanes
Text

Phylogenetic analyses of Candidatus Branchiomonas cysticola refine the taxonomic classification of Betaproteobacteria associated with epitheliocystis in fish

Citation
Bysveen Mjølnerød et al. (2023). Archives of Microbiology 205 (6)
Names
Ca. Branchiomonas cystocola Ca. Branchiomonas “Branchiomonaceae”
Abstract
AbstractCandidatus Branchiomonas cysticola is recognized as the most prevalent bacterial agent causing epitheliocystis in Atlantic salmon (Salmo salar). Based on its partial 16S rRNA sequence, the bacterium has previously been found to be a member of Burkholderiales in the class Betaproteobacteria. Multilocus Sequence Analysis (MLSA) of the bacterium and 60 type strains of Betaproteobacteria using newly identified housekeeping genes (dnaK, rpoC, and fusA) and ribosomal subunit sequences (16S and
Text

Candidatus Alkanophaga archaea from Guaymas Basin hydrothermal vent sediment oxidize petroleum alkanes

Citation
Zehnle et al. (2023). Nature Microbiology 8 (7)
Names
Ca. Alkanophaga Ca. Thermodesulfobacterium syntrophicum
Abstract
AbstractMethanogenic and methanotrophic archaea produce and consume the greenhouse gas methane, respectively, using the reversible enzyme methyl-coenzyme M reductase (Mcr). Recently, Mcr variants that can activate multicarbon alkanes have been recovered from archaeal enrichment cultures. These enzymes, called alkyl-coenzyme M reductase (Acrs), are widespread in the environment but remain poorly understood. Here we produced anoxic cultures degrading mid-chain petroleum n-alkanes between pentane (
Text

Naming genera after geographical locations. Proposal to emend Appendix 9 of the International Code of Nomenclature of Prokaryotes

Citation
Oren, Chuvochina (2023). International Journal of Systematic and Evolutionary Microbiology 73 (5)
Names
Macondimonas Kapaibacterium
Abstract
Appendix 9, Section E of the International Code of Nomenclature of Prokaryotes provides guidelines on how to form adjectival specific and subspecific epithets that reflect the geographical location where the organism was found or studied. It does not mention ways of naming genera after geographical locations. We here propose emendation of Appendix 9 with the recommendations on how to form such names. Comments on the implementation of the current wording of Appendix 9, Section E are also made.

The effect of methane and methanol on the terrestrial ammonia‐oxidizing archaeon ‘ Candidatus Nitrosocosmicus franklandus <scp>C13</scp> ’

Citation
Oudova‐Rivera et al. (2023). Environmental Microbiology 25 (5)
Names
Ca. Nitrosocosmicus franklandus
Abstract
Abstract The ammonia monooxygenase (AMO) is a key enzyme in ammonia‐oxidizing archaea, which are abundant and ubiquitous in soil environments. The AMO belongs to the copper‐containing membrane monooxygenase (CuMMO) enzyme superfamily, which also contains particulate methane monooxygenase (pMMO). Enzymes in the CuMMO superfamily are promiscuous, which results in co‐oxidation of alternative substrates. The phylogenetic and structural similarity between the pM
Text

Water column dynamics control nitrite-dependent anaerobic methane oxidation by Candidatus “Methylomirabilis” in stratified lake basins

Citation
Su et al. (2023). The ISME Journal 17 (5)
Names
Methylomirabilis
Abstract
Abstract We investigated microbial methane oxidation in the water column of two connected but hydrodynamically contrasting basins of Lake Lugano, Switzerland. Both basins accumulate large amounts of methane in the water column below their chemoclines, but methane oxidation efficiently prevents methane from reaching surface waters. Here we show that in the meromictic North Basin water column, a substantial fraction of methane was eliminated through anaerobic methane oxidation (AOM)
Text