Hausmann, Bela


Publications
7

Co-occurring nitrifying symbiont lineages are vertically inherited and widespread in marine sponges

Citation
Glasl et al. (2024). The ISME Journal 18 (1)
Names
“Nitrosokoinonia” “Nitrosymbion” “Nitrosokoinonia keratosae” “Nitrosymbion coscinodermae”
Abstract
Abstract Ammonia-oxidizing archaea and nitrite-oxidizing bacteria are common members of marine sponge microbiomes. They derive energy for carbon fixation and growth from nitrification—the aerobic oxidation of ammonia to nitrite and further to nitrate—and are proposed to play essential roles in the carbon and nitrogen cycling of sponge holobionts. In this study, we characterize two novel nitrifying symbiont lineages, Candidatus Nitrosokoinonia and Candidatus Nitrosymbion in the mar
Text

Ecophysiology and interactions of a taurine-respiring bacterium in the mouse gut

Citation
Ye et al. (2023). Nature Communications 14 (1)
Names
Taurinivorans muris Ts Taurinivorans
Abstract
AbstractTaurine-respiring gut bacteria produce H2S with ambivalent impact on host health. We report the isolation and ecophysiological characterization of a taurine-respiring mouse gut bacterium. Taurinivorans muris strain LT0009 represents a new widespread species that differs from the human gut sulfidogen Bilophila wadsworthia in its sulfur metabolism pathways and host distribution. T. muris specializes in taurine respiration in vivo, seemingly unaffected by mouse diet and genotype, but is dep
Text

Novel taxa of Acidobacteriota implicated in seafloor sulfur cycling

Citation
Flieder et al. (2021). The ISME Journal 15 (11)
Names
Sulfomarinibacter kjeldsenii Ts Sulfomarinibacter Sulfomarinibacteraceae Polarisedimenticola svalbardensis Ts Polarisedimenticola Polarisedimenticolaceae Polarisedimenticolia Polarisedimenticolales
Abstract
Abstract Acidobacteriota are widespread and often abundant in marine sediments, yet their metabolic and ecological properties are poorly understood. Here, we examined metabolisms and distributions of Acidobacteriota in marine sediments of Svalbard by functional predictions from metagenome-assembled genomes (MAGs), amplicon sequencing of 16S rRNA and dissimilatory sulfite reductase (dsrB) genes and transcripts, and gene expression analyses of tetrathionate-amended microcosms. Acido
Text

Genomic insights into diverse bacterial taxa that degrade extracellular DNA in marine sediments

Citation
Wasmund et al. (2021). Nature Microbiology 6 (7)
Names
Izemoplasma acidinucleici Ts Izemoplasmatales Izemoplasma Izemoplasmataceae
Abstract
AbstractExtracellular DNA is a major macromolecule in global element cycles, and is a particularly crucial phosphorus, nitrogen and carbon source for microorganisms in the seafloor. Nevertheless, the identities, ecophysiology and genetic features of DNA-foraging microorganisms in marine sediments are largely unknown. Here, we combined microcosm experiments, DNA stable isotope probing (SIP), single-cell SIP using nano-scale secondary isotope mass spectrometry (NanoSIMS) and genome-centric metagen
Text

Draft Genome Sequence of Desulfosporosinus sp. Strain Sb-LF, Isolated from an Acidic Peatland in Germany

Citation
Hausmann et al. (2019). Microbiology Resource Announcements 8 (29)
Names
Abstract
Desulfosporosinus sp. strain Sb-LF was isolated from an acidic peatland in Bavaria, Germany. Here, we report the draft genome sequence of the sulfate-reducing and lactate-utilizing strain Sb-LF.

Long-Term Transcriptional Activity at Zero Growth of a Cosmopolitan Rare Biosphere Member

Citation
Hausmann et al. (2019). mBio 10 (1)
Names
Desulfosporosinus infrequens
Abstract
The microbial rare biosphere represents the largest pool of biodiversity on Earth and constitutes, in sum of all its members, a considerable part of a habitat’s biomass. Dormancy or starvation is typically used to explain the persistence of low-abundance microorganisms in the environment. We show that a low-abundance microorganism can be highly transcriptionally active while remaining in a zero-growth state for at least 7 weeks. Our results provide evidence that this zero growth at a high cellul
Text

PeatlandAcidobacteriawith a dissimilatory sulfur metabolism

Citation
Hausmann et al. (2018). The ISME Journal 12 (7)
Names
“Sulfuripaludibacter” “Sulfuritelmatobacter kueseliae” Sulfuritelmatomonas Sulfuritelmatomonas gaucii Ts “Sulfuritelmatobacter”
Abstract
AbstractSulfur-cycling microorganisms impact organic matter decomposition in wetlands and consequently greenhouse gas emissions from these globally relevant environments. However, their identities and physiological properties are largely unknown. By applying a functional metagenomics approach to an acidic peatland, we recovered draft genomes of seven novel Acidobacteria species with the potential for dissimilatory sulfite (dsrAB, dsrC, dsrD, dsrN, dsrT, dsrMKJOP) or sulfate respiration (sat, apr
Text