Banfield, Jillian F.


Publications
22

Asgard archaea modulate potential methanogenesis substrates in wetland soil

Citation
Valentin-Alvarado et al. (2024). Nature Communications 15 (1)
Names
Freyarchaeia Freyarchaeales Freyarchaeaceae Atabeyarchaeales Atabeyarchaeaceae Freyarchaeum Atabeyarchaeum Atabeyarchaeia Atabeyarchaeum deiterrae Ts Freyarchaeum deiterrae Ts
Abstract
AbstractThe roles of Asgard archaea in eukaryogenesis and marine biogeochemical cycles are well studied, yet their contributions in soil ecosystems remain unknown. Of particular interest are Asgard archaeal contributions to methane cycling in wetland soils. To investigate this, we reconstructed two complete genomes for soil-associated Atabeyarchaeia, a new Asgard lineage, and a complete genome of Freyarchaeia, and predicted their metabolism in situ. Metatranscriptomics reveals expression of gene
Text

Asgard archaea modulate potential methanogenesis substrates in wetland soil

Citation
Valentin-Alvarado et al. (2023).
Names
11 Names
Abstract
AbstractThe roles of Asgard archaea in eukaryogenesis and marine biogeochemical cycles are well studied, yet their contributions in soil ecosystems are unknown. Of particular interest are Asgard archaeal contributions to methane cycling in wetland soils. To investigate this, we reconstructed two complete genomes for soil-associated Atabeyarchaeia, a new Asgard lineage, and the first complete genome of Freyarchaeia, and defined their metabolismin situ. Metatranscriptomics highlights high expressi
Text

Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes

Citation
Eme et al. (2023). Nature 618 (7967)
Names
Asgardarchaeota “Njordarchaeia” “Njordarchaeales” “Hodarchaeaceae” “Hodarchaeales”
Abstract
Abstract In the ongoing debates about eukaryogenesis—the series of evolutionary events leading to the emergence of the eukaryotic cell from prokaryotic ancestors—members of the Asgard archaea play a key part as the closest archaeal relatives of eukaryotes 1 . However, the nature and phylogenetic identity of the last common ancestor of Asgard archaea and eukaryotes remain unresolved 2–4
Text

Candidatus Nealsonbacteria” Are Likely Biomass Recycling Ectosymbionts of Methanogenic Archaea in a Stable Benzene-Degrading Enrichment Culture

Citation
Chen et al. (2023). Applied and Environmental Microbiology 89 (5)
Names
“Nealsoniibacteriota”
Abstract
An anaerobic microbial enrichment culture was used to study members of candidate phyla that are difficult to grow in the lab. We were able to visualize tiny “ Candidatus Nealsonbacteria” cells attached to a large Methanothrix cell, revealing a novel episymbiosis.

CandidatusNealsonbacteria (OD1) are biomass recycling ectosymbionts of methanogenic archaea in a stable benzene-degrading enrichment culture

Citation
Chen et al. (2022).
Names
“Nealsoniibacteriota”
Abstract
SummaryThe Candidate Phyla Radiation (CPR) is a very large group of bacteria with no pure culture representatives, first discovered by metagenomic analyses. Within the CPR, candidate phylum Parcubacteria (previously referred to as OD1) within the candidate superphylum Patescibacteria is prevalent in anoxic sediments and groundwater. Previously, we had identified a specific member of the Parcubacteria (referred to as DGGOD1a) as an important member of a methanogenic benzene-degrading consortium.
Text

Genome-resolved metagenomics reveals site-specific diversity of episymbiotic CPR bacteria and DPANN archaea in groundwater ecosystems

Citation
He et al. (2021). Nature Microbiology 6 (3)
Names
“Montesoliibacteriota” Azosocius agrarius Ts
Abstract
AbstractCandidate phyla radiation (CPR) bacteria and DPANN archaea are unisolated, small-celled symbionts that are often detected in groundwater. The effects of groundwater geochemistry on the abundance, distribution, taxonomic diversity and host association of CPR bacteria and DPANN archaea has not been studied. Here, we performed genome-resolved metagenomic analysis of one agricultural and seven pristine groundwater microbial communities and recovered 746 CPR and DPANN genomes in total. The pr
Text

Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface

Citation
Probst et al. (2018). Nature Microbiology 3 (3)
Names
11 Names
Abstract
AbstractAn enormous diversity of previously unknown bacteria and archaea has been discovered recently, yet their functional capacities and distributions in the terrestrial subsurface remain uncertain. Here, we continually sampled a CO2-driven geyser (Colorado Plateau, Utah, USA) over its 5-day eruption cycle to test the hypothesis that stratified, sandstone-hosted aquifers sampled over three phases of the eruption cycle have microbial communities that differ both in membership and function. Geno
Text

Complete 4.55-Megabase-Pair Genome of “ Candidatus Fluviicola riflensis,” Curated from Short-Read Metagenomic Sequences

Citation
Banfield et al. (2017). Genome Announcements 5 (47)
Names
Ca. Fluviicola riflensis
Abstract
ABSTRACT We report the 4.55-Mbp genome of “ Candidatus Fluviicola riflensis” ( Bacteroidetes ) that was manually curated to completion from Illumina data. “ Ca . Fluviicola riflensis” is a facultative anaerobe. Its ability to grow over a range of O 2 levels may favor its proliferation in an aquifer adjacent to the Colorado River in the United States.

Candidatus Mycoplasma girerdii replicates, diversifies, and co-occurs with Trichomonas vaginalis in the oral cavity of a premature infant

Citation
Costello et al. (2017). Scientific Reports 7 (1)
Names
Ca. Mycoplasma girerdii
Abstract
AbstractGenital mycoplasmas, which can be vertically transmitted, have been implicated in preterm birth, neonatal infections, and chronic lung disease of prematurity. Our prior work uncovered 16S rRNA genes belonging to a novel, as-yet-uncultivated mycoplasma (lineage ‘Mnola’) in the oral cavity of a premature neonate. Here, we characterize the organism’s associated community, growth status, metabolic potential, and population diversity. Sequencing of genomic DNA from the infant’s saliva yielded
Text