Kube, Michael


Publications
20

The complete genome of “ Candidatus Phytoplasma fraxini” AshY1 from the ash yellows group

Citation
Böhm et al. (2024). Microbiology Resource Announcements
Names
Ca. Phytoplasma fraxini
Abstract
ABSTRACT The complete genome of “ Candidatus Phytoplasma fraxini” AshY1, originating from Fraxinus americana in North America, was assembled using long reads from single-molecule real-time sequencing technology. The chromosome of 598 kb provides insights into the effector repertoire of a phytopathogenic bacterium from the 16SrVII phytoplasma group.

Divergence within the Taxon ‘Candidatus Phytoplasma asteris’ Confirmed by Comparative Genome Analysis of Carrot Strains

Citation
Toth et al. (2024). Microorganisms 12 (5)
Names
Ca. Phytoplasma asteris
Abstract
Phytoplasmas are linked to diseases in hundreds of economically important crops, including carrots. In carrots, phytoplasmosis is associated with leaf chlorosis and necrosis, coupled with inhibited root system development, ultimately leading to significant economic losses. During a field study conducted in Baden-Württemberg (Germany), two strains of the provisional taxon ‘Candidatus Phytoplasma asteris’ were identified within a carrot plot. For further analysis, strains M8 and M33 underwent shot

Prevalence of a ‘Candidatus Phytoplasma solani’-Related Strain Designated as New 16SrXII-P Subgroup over ‘Candidatus Arsenophonus phytopathogenicus’ in Sugar Beet in Eastern Germany

Citation
Duduk et al. (2023). Plant Disease 107 (12)
Names
Ca. Arsenophonus phytopathogenicus Ca. Phytoplasma solani
Abstract
Two phloem-limited pathogens, ‘Candidatus Arsenophonus phytopathogenicus’ and ‘Candidatus Phytoplasma solani’, threaten sugar beet production in France, Switzerland, and Germany. Previous studies of these pathogens in Germany had focused on its western and southern regions, leaving a knowledge gap about eastern Germany. Despite their importance, this study is the first to investigate phytoplasmas in sugar beet in Saxony-Anhalt, Germany. A phytoplasma strain related to ‘Ca. P. solani’ is found p

Genome Comparison of ‘Candidatus Phytoplasma rubi’ with Genomes of Other 16SrV Phytoplasmas Highlights Special Group Features

Citation
Böhm et al. (2023). Applied Microbiology 3 (3)
Names
Ca. Phytoplasma rubi Ca. Phytoplasma ziziphi
Abstract
Phytoplasmas are associated with important bacterial diseases, causing severe symptoms in agricultural and ornamental crops. ‘Candidatus Phytoplasma rubi’, associated with the Rubus stunt in raspberries (Rubus idaeus) and blackberries (Rubus subgenus Rubus), causes shortened internodes, elongated sepals, proliferation, phyllody, and virescence. The recently published genome of ‘Ca. P. rubi’ RS enabled a comprehensive genomic comparison to the complete genomes of 16SrV phytoplasmas, comprising st

Complete Genome of “ Candidatus Phytoplasma rubi” RS, a Phytopathogenic Bacterium Associated with Rubus Stunt Disease

Citation
Duckeck et al. (2023). Microbiology Resource Announcements 12 (5)
Names
Ca. Phytoplasma rubi
Abstract
The phytoplasma “ Candidatus Phytoplasma rubi” is associated with Rubus stunt disease. The complete genome was determined by assembling Oxford Nanopore Technologies system-derived long reads, with short-read polishing with Illumina reads. The genome of strain RS, from Germany, is organized in one circular chromosome with a length of 762 kb.

Revision of the ‘Candidatus Phytoplasma’ species description guidelines

Citation
Bertaccini et al. (2022). International Journal of Systematic and Evolutionary Microbiology 72 (4)
Names
Ca. Phytoplasma
Abstract
The genus ‘Candidatus Phytoplasma’ was proposed to accommodate cell wall-less bacteria that are molecularly and biochemically incompletely characterized, and colonize plant phloem and insect vector tissues. This provisional classification is highly relevant due to its application in epidemiological and ecological studies, mainly aimed at keeping the severe phytoplasma plant diseases under control worldwide. Given the increasing discovery of molecular diversity within the genus ‘Ca. Phytoplasma’,

Application of TaqMan Real-Time PCR for Detecting ‘Candidatus Arsenophonus Phytopathogenicus’ Infection in Sugar Beet

Citation
Zübert, Kube (2021). Pathogens 10 (11)
Names
Arsenophonus Ca. Arsenophonus phytopathogenicus
Abstract
The γ-proteobacterium ‘Candidatus Arsenophonus phytopathogenicus’ is assigned as the major pathogen of “Syndrome des basses richesses”, a sugar beet disease characterised by a reduction in the sugar content of taproots and biomass yield. Despite the economic impact of this bacteriosis, diagnostics for this important pathogen currently rely on end-point PCR detection. Herein, we introduce a TaqMan qPCR for diagnostics of the agent targeting genes encoding a heat shock protein of the Hsp20 family

Multilocus Genotyping of ‘Candidatus Phytoplasma solani’ Associated with Rubbery Taproot Disease of Sugar Beet in the Pannonian Plain

Citation
Ćurčić et al. (2021). Microorganisms 9 (9)
Names
Ca. Phytoplasma solani
Abstract
Rubbery taproot disease of sugar beet (RTD), associated with ‘Candidatus Phytoplasma solani’, appeared in 2020 on an epidemic scale in northern Serbia and southern Slovakia, situated at opposite edges of the Pannonian Plain. In the affected locations where the disease was assessed, symptomatic sugar beets were analysed for phytoplasma infection. Additionally, multilocus sequence analyses of ‘Ca. P. solani’ strains on epidemiologically informative marker genes (tuf, stamp and vmp1) were performed

Rubbery Taproot Disease of Sugar Beet in Serbia Associated with ‘Candidatus Phytoplasma solani’

Citation
Ćurčić et al. (2021). Plant Disease 105 (2)
Names
Ca. Phytoplasma solani
Abstract
Rubbery taproot disease (RTD) of sugar beet was observed in Serbia for the first time in the 1960s. The disease was already described in neighboring Bulgaria and Romania at the time but it was associated with abiotic factors. In this study on RTD of sugar beet in its main growing area of Serbia, we provide evidence of the association between ‘Candidatus Phytoplasma solani’ (stolbur phytoplasma) infection and the occurrence of typical RTD symptomatology. ‘Ca. P. solani’ was identified by PCR and