Publications
4453

Sort by date names
Browse by authors subjects journals

“Candidatus Chlorobium masyuteum,” a Novel Photoferrotrophic Green Sulfur Bacterium Enriched From a Ferruginous Meromictic Lake

Citation
Lambrecht et al. (2021). Frontiers in Microbiology 12
Names
Ca. Chlorobium masyuteum Ca. Pseudopelobacter ferreus
Abstract
Anoxygenic phototrophic bacteria can be important primary producers in some meromictic lakes. Green sulfur bacteria (GSB) have been detected in ferruginous lakes, with some evidence that they are photosynthesizing using Fe(II) as an electron donor (i.e., photoferrotrophy). However, some photoferrotrophic GSB can also utilize reduced sulfur compounds, complicating the interpretation of Fe-dependent photosynthetic primary productivity. An enrichment (BLA1) from meromictic ferruginous Brownie Lake,
Text

EpicPCR-Directed Cultivation of a Candidatus Saccharibacteria Symbiont Reveals a Type IV Pili-dependent Epibiotic Lifestyle

Citation
Xie et al. (2021).
Names
Ca. Saccharibacteria
Abstract
AbstractCandidate phyla radiations (CPR), accounting for a major microbial supergroup with remarkably small genomes and reduced sizes, are widely distributed yet mostly uncultured. Limited culture and its obligate reliance upon other bacteria hindered investigation of their lifestyles. In this work we isolated a CPR bacterium, TM7i, with its host Leucobacter aridocollis J1, by combination of Emulsion, Paired Isolation and Concatenation PCR (epicPCR) detection and filtrate co-culture. Genomic pro
Text

Bactericera cockerelli vector de Candidatus Liberibacter solanacearum, morfometría y haplotipos en poblaciones de México

Citation
Cerna Chávez et al. (2021). Revista Mexicana de Ciencias Agrícolas (26)
Names
“Liberibacter solanacearum”
Abstract
Bactericera cockerelli es una plaga de importancia económica en solanáceas en México, por los amarillamientos que causa en los cultivos, así como por la transmisión de Candidatus Liberibacter solanacearum. Se describen variantes genéticas de este insecto, las cuales se relacionan con su capacidad para fungir como vector. En México, la distribución de B. cockerelli es muy amplia y se carece de información acerca de sus características morfológicas y genéticas. El objetivo de esta investigación fu
Text

Candidatus Liberibacter asiaticus . [Distribution map]

Citation
Cabi, Eppo (2021). Distribution Maps of Plant Diseases
Names
Ca. Liberibacter asiaticus
Abstract
Abstract A new distribution map is provided for Candidatus Liberibacter asiaticus Jagoueix et al. Alphaproteobacteria: Rhizobiales: Rhizobiaceae. Hosts: Citrus spp. Information is given on the geographical distribution in Africa (Egypt, Ethiopia, Kenya, Mauritius, Réunion, Tanzania, Uganda), Asia (Bangladesh, Bhutan, Borneo, Cambodia, China, Fujian, Guangdong, Guangxi, Guizhou, Hainan, Hunan, Jiangxi, Sichuan, Yunnan, Zhejian
Text

Bacteriomic Analyses of Asian Citrus Psyllid and Citrus Samples Infected With “Candidatus Liberibacter asiaticus” in Southern California and Huanglongbing Management Implications

Citation
Huang et al. (2021). Frontiers in Microbiology 12
Names
Ca. Carsonella ruddii Ca. Liberibacter asiaticus Ca. Profftella armatura
Abstract
Citrus Huanglongbing (HLB; yellow shoot disease) is associated with an unculturable α-proteobacterium “Candidatus Liberibacter asiaticus” (CLas). HLB was found in southern California in 2012, and the current management strategy is based on suppression of the Asian citrus psyllid (Diaphorina citri) that transmits CLas and removal of confirmed CLas-positive trees. Little is known about Asian citrus psyllid-associated bacteria and citrus-associated bacteria in the HLB system. Such information is im
Text

Complete Genome Sequence of Rhynchophorus ferrugineus Endocytobiont “ Candidatus Nardonella dryophthoridicola” Strain NardRF

Citation
Chouaia et al. (2021). Microbiology Resource Announcements 10 (26)
Names
“Nardonella dryophthoridicola”
Abstract
We report the complete genome sequence and annotation of “ Candidatus Nardonella dryophthoridicola” strain NardRF, obtained by sequencing its host bacteriome, Rhynchophorus ferrugineus , using Oxford Nanopore technology.