Publications
3841

Sort by date names
Browse by authors subjects journals

SUITABILITY AREAS FOR Candidatus Liberibacter asiaticus UNDER DIFFERENT CLIMATE CHANGE SCENARIOS IN MEXICO

Citation
Rodríguez-Aguilar et al. (2024). Tropical and Subtropical Agroecosystems 27 (1)
Names
Ca. Liberibacter asiaticus
Abstract
<p><strong>Background.</strong> Climate change models have projected an increase in the distribution of certain crop pests of economic importance by forecasting more favorable future conditions for these organisms. In citrus farming, Huanglongbing is one of the most devastating diseases worldwide, since it has caused the death of millions of trees. <strong>Objetive.</strong> The objective of this study was to estimate the current and future distribution of <em&gt

First detection of ‘Candidatus Phytoplasma ulmi’ in Switzerland and in Orientus ishidae Matsumura, 1902

Citation
Oggier et al. (2024). Alpine Entomology 8
Names
Ca. Phytoplasma ulmi
Abstract
‘Candidatus Phytoplasma ulmi’ (Ca. P. ulmi) belongs to the ribosomal subgroup 16SrV-A and is associated with dieback, shoot proliferation and yellows disease on various Ulmus spp. Other plant species, such as Carpinus betulus and Prunus spp. have also been reported infected by the same pathogen. In 2021, in the frame of research activities focused on grapevine’s Flavescence dorée (FD), one specimen of Orientus ishidae - an East Palearctic leafhopper that was identified as an alternative vector o

Candidatus Liberibacter solananearum-tomato as an experimental system for the study of genes associated with Huanglongbing in Mexican lime

Citation
Hernández-Peraza et al. (2024). Revista Mexicana de Fitopatología, Mexican Journal of Phytopathology 40 (4)
Names
Liberibacter Ca. Liberibacter asiaticus
Abstract
The increasing impact of phloem-restricted bacteria on economically important crops has led to renewed interest in understanding the pathogenesis at the genomic and histological levels of these diseases. The genus Candidatus Liberibacter is associated with economically devastating diseases, highlighting Candidatus Liberibacter asiaticus (CLas) and Candidatus Liberibacter solanaceraum (CLso) in citrus and vegetables. Plant-pathogen interaction studies are limited due to the non-culturable nature

Genome analysis of “Candidatus Aschnera chinzeii,” the bacterial endosymbiont of the blood-sucking bat fly Penicillidia jenynsii (Insecta: Diptera: Nycteribiidae)

Citation
Koga et al. (2024). Frontiers in Microbiology 14
Names
“Aschnera chinzeii”
Abstract
Insect–microbe endosymbiotic associations are omnipresent in nature, wherein the symbiotic microbes often play pivotal biological roles for their host insects. In particular, insects utilizing nutritionally imbalanced food sources are dependent on specific microbial symbionts to compensate for the nutritional deficiency via provisioning of B vitamins in blood-feeding insects, such as tsetse flies, lice, and bedbugs. Bat flies of the family Nycteribiidae (Diptera) are blood-sucking ectoparasites

FlgI Is a Sec-Dependent Effector of Candidatus Liberibacter asiaticus That Can Be Blocked by Small Molecules Identified Using a Yeast Screen

Citation
Zuo et al. (2024). Plants 13 (2)
Names
Ca. Liberibacter asiaticus
Abstract
Huanglongbing (HLB) is one of the most devastating diseases of citrus worldwide. The phloem-restricted bacterium Candidatus Liberibacter asiaticus (CLas) is considered to be the main pathogen responsible for HLB. There is currently no effective practical strategy for the control of HLB. Our understanding of how pathogens cause HLB is limited because CLas has not been artificially cultured. In this study, 15 potential virulence factors were predicted from the proteome of CLas through DeepVF and P

Sub-optimal temperatures lead to altered expression of stress-related genes and increased ‘Candidatus Liberibacter solanacearum’ accumulation in potato psyllid

Citation
Fisher et al. (2024). Frontiers in Insect Science 3
Names
“Liberibacter solanacearum”
Abstract
IntroductionThe potato psyllid Bactericera cockerelli is the insect vector of the fastidious bacterium ‘Candidatus Liberibacter solanacearum’. The bacterium infects both B. cockerelli and plant species, causing zebra chip (ZC) disease of potato and vein-greening disease of tomato. Temperatures are known to influence the initiation and progression of disease symptom in the host plant, and seasonal transitions from moderate to high temperatures trigger psyllid dispersal migration to facilitate sur

Improving the Comprehension of Pathogenicity and Phylogeny in ‘Candidatus Phytoplasma meliae’ through Genome Characterization

Citation
Fernández et al. (2024). Microorganisms 12 (1)
Names
Ca. Phytoplasma meliae
Abstract
‘Candidatus Phytoplasma meliae’ is a pathogen associated with chinaberry yellowing disease, which has become a major phytosanitary problem for chinaberry forestry production in Argentina. Despite its economic impact, no genome information of this phytoplasma has been published, which has hindered its characterization at the genomic level. In this study, we used a metagenomics approach to analyze the draft genome of the ‘Ca. P. meliae’ strain ChTYXIII. The draft assembly consisted of twenty-one c

Flexible genomic island conservation across freshwater and marine Methylophilaceae

Citation
Layoun et al. (2024). The ISME Journal 18 (1)
Names
“Novamethylotenera aquatica” “Methylopumilus” “Methylopumilus planktonicus”
Abstract
Abstract The evolutionary trajectory of Methylophilaceae includes habitat transitions from freshwater sediments to freshwater and marine pelagial that resulted in genome reduction (genome-streamlining) of the pelagic taxa. However, the extent of genetic similarities in the genomic structure and microdiversity of the two genome-streamlined pelagic lineages (freshwater “Ca. Methylopumilus” and the marine OM43 lineage) has so far never been compared. Here, we analyzed complete genome