Publications
4425

Sort by date names
Browse by authors subjects journals

First Report of ‘Candidatus Liberibacter solanacearum’ on Pepper in Honduras

Citation
Munyaneza et al. (2014). Plant Disease 98 (1)
Names
“Liberibacter solanacearum”
Abstract
In April and May of 2012, bell pepper (Capsicum annuum) plants exhibiting symptoms that resembled those of the bacterium ‘Candidatus Liberibacter solanacearum’ infection (2,4) were observed in commercial pepper fields in several departments in Honduras, including Francisco Morazán, Ocotepeque, El Paraíso, and Olancho. Many of the fields were infested with the psyllid Bactericera cockerelli, a vector of ‘Ca. L. solanacearum’ (3). The plants exhibited chlorotic or pale green apical growth and lea
Text

Localization of ‘Candidatus Liberibacter solanacearum' (Rhizobiales: Rhizobiaceae) in Bactericera cockerelli (Hemiptera: Triozidae)

Citation
Cooper et al. (2014). Annals of the Entomological Society of America 107 (1)
Names
“Liberibacter solanacearum”
Abstract
Abstract ‘Candidatus Liberibacter solanacearum’ is a pathogen of solanaceous crops (Solanales: Solanaceae) that causes zebra chip disease of potato (Solanum tuberosum L.) and plant dieback in tomato (S. lycopersicum L.) and pepper (Capsicum spp.). This pathogen is vectored by the potato/ tomato psyllid Bactericera cockerelli (Šulc) (Hemiptera: Triozidae), but little is known about the interactions between B. cockerelli and ‘Ca. Liberibacter solanacearum.’ Fluorescence in situ hybr
Text

Proteomic and Transcriptomic Analyses of “CandidatusPelagibacter ubique” Describe the First PII-Independent Response to Nitrogen Limitation in a Free-Living Alphaproteobacterium

Citation
Smith et al. (2013). mBio 4 (6)
Names
Pelagibacter ubiqueversans Ts
Abstract
ABSTRACTNitrogen is one of the major nutrients limiting microbial productivity in the ocean, and as a result, most marine microorganisms have evolved systems for responding to nitrogen stress. The highly abundant alphaproteobacterium “CandidatusPelagibacter ubique,” a cultured member of the orderPelagibacterales(SAR11), lacks the canonical GlnB, GlnD, GlnK, and NtrB/NtrC genes for regulating nitrogen assimilation, raising questions about how these organisms respond to nitrogen limitation. A surv
Text