Publications
3805

Sort by date names
Browse by authors subjects journals

Physiological Variables Influenced by ‘Candidatus Liberibacter asiaticus’ Infection in Two Citrus Species

Citation
Wu et al. (2023). Plant Disease 107 (6)
Names
Ca. Liberibacter asiaticus
Abstract
‘Candidatus Liberibacter asiaticus’ is the bacterium associated with the citrus disease known as huanglongbing (HLB). This study evaluated the influence of ‘Ca. L. asiaticus’ infection on a number of key plant physiological variables concerning photosynthesis, cell integrity, reactive oxygen species scavengers’ activity, and osmoregulation of two different species of citrus—the pomelo Citrus maxima and the mandarin C. reticulata ‘Tankan’—relative to their measured ‘Ca. L. asiaticus’ infection l

Microscopic and Transcriptomic Analyses of Early Events Triggered by ‘Candidatus Liberibacter asiaticus’ in Young Flushes of Huanglongbing-Positive Citrus Trees

Citation
Pandey et al. (2023). Phytopathology® 113 (6)
Names
Ca. Liberibacter asiaticus
Abstract
‘ Candidatus Liberibacter asiaticus’ (CLas) is associated with the devastating citrus disease Huanglongbing (HLB). Young flushes are the center of the HLB pathosystem due to their roles in the psyllid life cycle and in the acquisition and transmission of CLas. However, the early events of CLas infection and how CLas modulates young flush physiology remain poorly understood. Here, transmission electron microscopy analysis showed that the mean diameter of the sieve pores decreased in young leaves

Update and Validation of the 16S rDNA qPCR Assay for the Detection of Three ‘Candidatus Liberibacter Species’ Following Current MIQE Guidelines and Workflow

Citation
Osman et al. (2023). PhytoFrontiers™ 3 (1)
Names
Liberibacter Ca. Liberibacter asiaticus
Abstract
An updated real-time multiplex quantitative polymerase chain reaction (qPCR) assay was designed and validated for the simultaneous detection of three ‘ Candidatus Liberibacter species’ (CLsp), ‘ Ca. Liberibacter asiaticus’ (CLas), ‘africanus’ (CLaf), and ‘americanus’ (CLam), associated with the huanglongbing disease of citrus. The multiplex assay was designed based on the qPCR assay published in 2006 by Li et al., considering all available CLsp 16S rRNA gene sequences in GenBank and the MIQE gu

Development of a Loop-Mediated Isothermal Amplification (LAMP) Method to Detect the Potato Zebra Chip Pathogen ‘Candidatus Liberibacter solanacearum’ (Lso) and Differentiate Haplotypes A and B

Citation
Jiang et al. (2023). Plant Disease 107 (6)
Names
“Liberibacter solanacearum”
Abstract
‘Candidatus Liberibacter solanacearum’ (Lso) is the causal agent of zebra chip of potato (Solanum tuberosum), which can significantly reduce potato yield. In this study, a loop-mediated isothermal amplification (LAMP) method for the detection of Lso haplotypes A and B was developed and evaluated. Two sets of LAMP primers named LAMP-A and LAMP-B were designed and tested for specificity and sensitivity. Both LAMP-A and LAMP-B were specific to Lso in in silico analysis using the Primer-Blast tool.

Candidatus Alkanophaga archaea from Guaymas Basin hydrothermal vent sediment oxidize petroleum alkanes

Citation
Zehnle et al. (2023). Nature Microbiology 8 (7)
Names
Ca. Alkanophaga Ca. Syntrophoarchaeum Ca. Thermodesulfobacterium syntrophicum
Abstract
AbstractMethanogenic and methanotrophic archaea produce and consume the greenhouse gas methane, respectively, using the reversible enzyme methyl-coenzyme M reductase (Mcr). Recently, Mcr variants that can activate multicarbon alkanes have been recovered from archaeal enrichment cultures. These enzymes, called alkyl-coenzyme M reductase (Acrs), are widespread in the environment but remain poorly understood. Here we produced anoxic cultures degrading mid-chain petroleum n-alkanes between pentane (