Publications
3841

Sort by date names
Browse by authors subjects journals

Synthase-selected sorting approach identifies a beta-lactone synthase in a nudibranch symbiotic bacterium

Citation
Džunková et al. (2023). Microbiome 11 (1)
Names
Doriopsillibacter californiensis Ts Doriopsillibacter Perseibacteraceae
Abstract
Abstract Background Nudibranchs comprise a group of > 6000 marine soft-bodied mollusk species known to use secondary metabolites (natural products) for chemical defense. The full diversity of these metabolites and whether symbiotic microbes are responsible for their synthesis remains unexplored. Another issue in searching for undiscovered natural products is that computational analysis of genomes of uncultured microbes can result in detection of novel biosynthe

Coraliomargarita parva sp. nov., isolated from mangrove sediment and genome-based analysis of the class Opitutae revealed five novel families: Coraliomargaritaceae fam. nov., Pelagicoccaceae fam. nov., Cerasicoccaeae fam. nov., Oceanipulchritudinaceae fam. nov., and Alterococcaeae fam. nov

Citation
Min et al. (2023). Frontiers in Microbiology 14
Names
Alterococcaceae Cerasicoccaceae Coraliomargaritaceae Pelagicoccaceae
Abstract
Members of the class Opitutae are widely distributed in various environments such as rice paddy soil, freshwater lakes, seawater, marine sediment, and invertebrate digestive tracts. The class currently consists of two orders, Opitutales and Puniceicoccales, represented by the families Opitutaceae and Puniceicoccaceae, respectively, which are primarily delineated on the basis of 16S rRNA gene sequences and limited phenotypic characterizations of a few type strains. The scarcity of 16S rRNA gene a

Endophytes and Plant Extracts as Potential Antimicrobial Agents against Candidatus Liberibacter Asiaticus, Causal Agent of Huanglongbing

Citation
Dominguez et al. (2023). Microorganisms 11 (6)
Names
Liberibacter Ca. Liberibacter asiaticus
Abstract
Huanglongbing (HLB), also known as citrus greening, is an insidious disease in citrus and has become a threat to the sustainability of the citrus industry worldwide. In the U.S., Candidatus Liberibacter asiaticus (CLas) is the pathogen that is associated with HLB, an unculturable, phloem-limited bacteria, vectored by the Asian Citrus Psyllid (ACP, Diaphorina citri). There is no known cure nor treatment to effectively control HLB, and current control methods are primarily based on the use of inse

Real-time on-site detection of the three ‘Candidatus Liberibacter’ species associated with HLB disease: a rapid and validated method

Citation
Morán et al. (2023). Frontiers in Plant Science 14
Names
Liberibacter
Abstract
Huanglongbing (HLB) is a devastating disease that affects all commercial citrus species worldwide. The disease is associated with bacteria of three species of the genus ‘Candidatus Liberibacter’ transmitted by psyllid vectors. To date, HLB has no cure, so preventing its introduction into HLB-free areas is the best strategy to control its spread. For that, the use of accurate, sensitive, specific, and reliable detection methods is critical for good integrated management of this serious disease. T

Phylogenetic analyses of Candidatus Branchiomonas cysticola refine the taxonomic classification of Betaproteobacteria associated with epitheliocystis in fish

Citation
Bysveen Mjølnerød et al. (2023). Archives of Microbiology 205 (6)
Names
Ca. Branchiomonas cystocola Ca. Branchiomonas “Branchiomonaceae”
Abstract
AbstractCandidatus Branchiomonas cysticola is recognized as the most prevalent bacterial agent causing epitheliocystis in Atlantic salmon (Salmo salar). Based on its partial 16S rRNA sequence, the bacterium has previously been found to be a member of Burkholderiales in the class Betaproteobacteria. Multilocus Sequence Analysis (MLSA) of the bacterium and 60 type strains of Betaproteobacteria using newly identified housekeeping genes (dnaK, rpoC, and fusA) and ribosomal subunit sequences (16S and

Candidatus Alkanophaga archaea from Guaymas Basin hydrothermal vent sediment oxidize petroleum alkanes

Citation
Zehnle et al. (2023). Nature Microbiology 8 (7)
Names
Ca. Alkanophaga Ca. Syntrophoarchaeum Ca. Thermodesulfobacterium syntrophicum
Abstract
AbstractMethanogenic and methanotrophic archaea produce and consume the greenhouse gas methane, respectively, using the reversible enzyme methyl-coenzyme M reductase (Mcr). Recently, Mcr variants that can activate multicarbon alkanes have been recovered from archaeal enrichment cultures. These enzymes, called alkyl-coenzyme M reductase (Acrs), are widespread in the environment but remain poorly understood. Here we produced anoxic cultures degrading mid-chain petroleum n-alkanes between pentane (