Publications
4369

Sort by date names
Browse by authors subjects journals

Isolate-anchored comparisons reveal evolutionary and functional differentiation across SAR86 marine bacteria

Citation
Ramfelt et al. (2024). The ISME Journal 18 (1)
Names
Magnimaribacter mokuoloeensis Ts Magnimaribacter Magnimaribacteraceae Magnimaribacterales
Abstract
Abstract SAR86 is one of the most abundant groups of bacteria in the global surface ocean. However, since its discovery over 30 years ago, it has remained recalcitrant to isolation and many details regarding this group are still unknown. Here, we report the cellular characteristics from the first SAR86 isolate brought into culture, Magnimaribacter mokuoloeensis strain HIMB1674, and use its closed genome in concert with over 700 environmental genomes to assess the phylogenomic and
Text

Members of the class Candidatus Ordosarchaeia imply an alternative evolutionary scenario from methanogens to haloarchaea

Citation
Zhao et al. (2024). The ISME Journal 18 (1)
Names
Ca. Hikarchaeia Ca. Ordosarchaeia
Abstract
Abstract The origin of methanogenesis can be traced to the common ancestor of non-DPANN archaea, whereas haloarchaea (or Halobacteria) are believed to have evolved from a methanogenic ancestor through multiple evolutionary events. However, due to the accelerated evolution and compositional bias of proteins adapting to hypersaline habitats, Halobacteria exhibit substantial evolutionary divergence from methanogens, and the identification of the closest methanogen (either Methanonatr
Text

Temperature, pH, and oxygen availability contributed to the functional differentiation of ancient Nitrososphaeria

Citation
Luo et al. (2024). The ISME Journal 18 (1)
Names
“UBA164”
Abstract
Abstract Ammonia-oxidizing Nitrososphaeria are among the most abundant archaea on Earth and have profound impacts on the biogeochemical cycles of carbon and nitrogen. In contrast to these well-studied ammonia-oxidizing archaea (AOA), deep-branching non-AOA within this class remain poorly characterized because of a low number of genome representatives. Here, we reconstructed 128 Nitrososphaeria metagenome-assembled genomes from acid mine drainage and hot spring sediment metagenomes
Text

Chlamydiae as symbionts of photosynthetic dinoflagellates

Citation
Maire et al. (2024). The ISME Journal 18 (1)
Names
Algichlamydia Algichlamydia australiensis Ts
Abstract
Abstract Chlamydiae are ubiquitous intracellular bacteria and infect a wide diversity of eukaryotes, including mammals. However, chlamydiae have never been reported to infect photosynthetic organisms. Here, we describe a novel chlamydial genus and species, Candidatus Algichlamydia australiensis, capable of infecting the photosynthetic dinoflagellate Cladocopium sp. (originally isolated from a scleractinian coral). Algichlamydia australiensis was confirmed to be intracellular by fl
Text

Tissue-associated and vertically transmitted bacterial symbiont in the coral Pocillopora acuta

Citation
Maire et al. (2024). The ISME Journal 18 (1)
Names
Sororendozoicomonas aggregata Ts Sororendozoicomonas
Abstract
Abstract Coral microhabitats are colonized by a myriad of microorganisms, including diverse bacteria which are essential for host functioning and survival. However, the location, transmission, and functions of individual bacterial species living inside the coral tissues remain poorly studied. Here, we show that a previously undescribed bacterial symbiont of the coral Pocillopora acuta forms cell-associated microbial aggregates (CAMAs) within the mesenterial filaments. CAMAs were f
Text

Simple Porifera holobiont reveals complex interactions between the host, an archaeon, a bacterium, and a phage

Citation
Garritano et al. (2024). The ISME Journal 18 (1)
Names
Nitrosoabyssus Nitrosoabyssus spongiisocia Ts Zeuxoniibacter abyssi Ts Zeuxoniibacter
Abstract
Abstract The basal metazoan phylum Porifera (sponges) is increasingly used as a model to investigate ecological and evolutionary features of microbe–animal symbioses. However, sponges often host complex microbiomes, which has hampered our understanding of their interactions with their microbial symbionts. Here, we describe the discovery and characterization of the simplest sponge holobiont reported to date, consisting of the deep-sea glass sponge Aphrocallistes beatrix and two new
Text

Spirochaete genome identified in red abalone sample represents a novel genus Candidatus Haliotispira gen. nov. within the order Spirochaetales

Citation
Sharma et al. (2024). International Journal of Systematic and Evolutionary Microbiology 74 (1)
Names
Ca. Haliotispira Ca. Haliotispira prima
Abstract
A fully assembled spirochaete genome was identified as a contaminating scaffold in our red abalone (Haliotis rufescens) genome assembly. In this paper, we describe the analysis of this bacterial genome. The assembled spirochaete genome is 3.25 Mb in size with 48.5 mol% G+C content. The proteomes of 38 species were compared with the spirochaete genome and it was discovered to form an independent branch within the family Spirochaetaceae
Text

The best of both worlds: a proposal for further integration of Candidatus names into the International Code of Nomenclature of Prokaryotes

Citation
Arahal et al. (2024). International Journal of Systematic and Evolutionary Microbiology 74 (1)
Names
Abstract
The naming of prokaryotes is governed by the International Code of Nomenclature of Prokaryotes (ICNP) and partially by the International Code of Nomenclature for Algae, Fungi and Plants (ICN). Such codes must be able to determine names of taxa in a universal and unambiguous manner, thus serving as a common language across different fields and activities. This unity is undermined when a new code of nomenclature emerges that overlaps in scope with an established, time-tested code and uses the same
Text

Phylogenomics studies and molecular markers reliably demarcate genus Pseudomonas sensu stricto and twelve other Pseudomonadaceae species clades representing novel and emended genera

Citation
Rudra, Gupta (2024). Frontiers in Microbiology 14
Names
Zestomonas
Abstract
Genus Pseudomonas is a large assemblage of diverse microorganisms, not sharing a common evolutionary history. To clarify their evolutionary relationships and classification, we have conducted comprehensive phylogenomic and comparative analyses on 388 Pseudomonadaceae genomes. In phylogenomic trees, Pseudomonas species formed 12 main clusters, apart from the “Aeruginosa clade” containing its type species, P. aeruginosa. In parallel, our detailed analyses on protein sequences from Pseudomonadaceae
Text