Publications
4449

Sort by date names
Browse by authors subjects journals

Ubiquitous genome streamlined Acidobacteriota in freshwater environments

Citation
Wong et al. (2024). ISME Communications 4 (1)
Names
Acidiparvus lacustris Ts Acidiparvus fluvialis Acidiparvus
Abstract
Abstract Acidobacteriota are abundant in soil, peatlands, and sediments, but their ecology in freshwater environments remains understudied. UBA12189, an Acidobacteriota genus, is an uncultivated, genome-streamlined lineage with a small genome size found in aquatic environments where detailed genomic analyses are lacking. Here, we analyzed 66 MAGs of UBA12189 (including one complete genome) from freshwater lakes and rivers in Europe, North America, and Asia. UBA12189 has small geno
Text

Tissue-associated and vertically transmitted bacterial symbiont in the coral Pocillopora acuta

Citation
Maire et al. (2024). The ISME Journal 18 (1)
Names
Sororendozoicomonas aggregata Ts Sororendozoicomonas
Abstract
Abstract Coral microhabitats are colonized by a myriad of microorganisms, including diverse bacteria which are essential for host functioning and survival. However, the location, transmission, and functions of individual bacterial species living inside the coral tissues remain poorly studied. Here, we show that a previously undescribed bacterial symbiont of the coral Pocillopora acuta forms cell-associated microbial aggregates (CAMAs) within the mesenterial filaments. CAMAs were f
Text

Ca. Nitrosocosmicus” members are the dominant archaea associated with pepper (Capsicum annuumL.) and ginseng (Panax ginsengC.A. Mey.) plants’ rhizospheres

Citation
Lee et al. (2024).
Names
Ca. Nitrosocosmicus
Abstract
AbstractBackgroundAlthough archaea are widespread in terrestrial environments, little is known about the selection forces that shape their composition, functions, survival, and proliferation strategies in the rhizosphere. The ammonia-oxidizing archaea (AOA), which are abundant in soil environments, catalyze the first step of nitrification and have the potential to influence plant growth and development significantly.ResultsBased on archaeal 16S rRNA andamoAgene (encoding the ammonia monooxygenas
Text

Chlamydiae as symbionts of photosynthetic dinoflagellates

Citation
Maire et al. (2024). The ISME Journal 18 (1)
Names
Algichlamydia Algichlamydia australiensis Ts
Abstract
Abstract Chlamydiae are ubiquitous intracellular bacteria and infect a wide diversity of eukaryotes, including mammals. However, chlamydiae have never been reported to infect photosynthetic organisms. Here, we describe a novel chlamydial genus and species, Candidatus Algichlamydia australiensis, capable of infecting the photosynthetic dinoflagellate Cladocopium sp. (originally isolated from a scleractinian coral). Algichlamydia australiensis was confirmed to be intracellular by fl
Text

Candidatus Siderophilus nitratireducens”: a putative nap-dependent nitrate-reducing iron oxidizer within the new order Siderophiliales

Citation
Corbera-Rubio et al. (2024). ISME Communications 4 (1)
Names
Ca. Siderophilus nitratireducens
Abstract
Abstract Nitrate leaching from agricultural soils is increasingly found in groundwater, a primary source of drinking water worldwide. This nitrate influx can potentially stimulate the biological oxidation of iron in anoxic groundwater reservoirs. Nitrate-dependent iron-oxidizing (NDFO) bacteria have been extensively studied in laboratory settings, yet their ecophysiology in natural environments remains largely unknown. To this end, we established a pilot-scale filter on nitrate-ri
Text

The best of both worlds: a proposal for further integration of Candidatus names into the International Code of Nomenclature of Prokaryotes

Citation
Arahal et al. (2024). International Journal of Systematic and Evolutionary Microbiology 74 (1)
Names
Abstract
The naming of prokaryotes is governed by the International Code of Nomenclature of Prokaryotes (ICNP) and partially by the International Code of Nomenclature for Algae, Fungi and Plants (ICN). Such codes must be able to determine names of taxa in a universal and unambiguous manner, thus serving as a common language across different fields and activities. This unity is undermined when a new code of nomenclature emerges that overlaps in scope with an established, time-tested code and uses the same
Text

Spirochaete genome identified in red abalone sample represents a novel genus Candidatus Haliotispira gen. nov. within the order Spirochaetales

Citation
Sharma et al. (2024). International Journal of Systematic and Evolutionary Microbiology 74 (1)
Names
Ca. Haliotispira Ca. Haliotispira prima
Abstract
A fully assembled spirochaete genome was identified as a contaminating scaffold in our red abalone (Haliotis rufescens) genome assembly. In this paper, we describe the analysis of this bacterial genome. The assembled spirochaete genome is 3.25 Mb in size with 48.5 mol% G+C content. The proteomes of 38 species were compared with the spirochaete genome and it was discovered to form an independent branch within the family Spirochaetaceae
Text

Phylogenomics studies and molecular markers reliably demarcate genus Pseudomonas sensu stricto and twelve other Pseudomonadaceae species clades representing novel and emended genera

Citation
Rudra, Gupta (2024). Frontiers in Microbiology 14
Names
Zestomonas
Abstract
Genus Pseudomonas is a large assemblage of diverse microorganisms, not sharing a common evolutionary history. To clarify their evolutionary relationships and classification, we have conducted comprehensive phylogenomic and comparative analyses on 388 Pseudomonadaceae genomes. In phylogenomic trees, Pseudomonas species formed 12 main clusters, apart from the “Aeruginosa clade” containing its type species, P. aeruginosa. In parallel, our detailed analyses on protein sequences from Pseudomonadaceae
Text

Physalis virginiana as a Wild Field Host of Bactericera cockerelli (Hemiptera: Triozidae) and ‘Candidatus Liberibacter solanacearum’

Citation
Delgado-Luna et al. (2024). Plant Disease 108 (1)
Names
“Liberibacter solanacearum”
Abstract
The potato/tomato psyllid, Bactericera cockerelli (Šulc), is among the most important pests of solanaceous crops as a vector of the pathogen ‘Candidatus Liberibacter solanacearum’ (Lso). Lso-infected psyllids often arrive in crop fields from various wild species of Solanaceae and Convolvulaceae, especially those that provide early-season hosts for the vector. Physalis species are perennial plants within the family Solanaceae with often broad geographical distributions that overlap those of B. c
Text