Publications
3805

Sort by date names
Browse by authors subjects journals

The genome of Candidatus phytoplasma ziziphi provides insights into their biological characteristics

Citation
Xue et al. (2023). BMC Plant Biology 23 (1)
Names
Ca. Phytoplasma ziziphi
Abstract
AbstractPhytoplasmas are obligate cell wall-less prokaryotic bacteria that primarily multiply in plant phloem tissue. Jujube witches’ broom (JWB) associated with phytoplasma is a destructive disease of jujube (Ziziphus jujuba Mill.). Here we report the complete ‘Candidatus Phytoplasma ziziphi’ chromosome of strain Hebei-2018, which is a circular genome of 764,108-base pairs with 735 predicted CDS. Notably, extra 19,825 bp (from 621,995 to 641,819 bp) compared to the previously reported one compl

Aristaeella hokkaidonensis gen. nov. sp. nov. and Aristaeella lactis sp. nov., two rumen bacterial species of a novel proposed family, Aristaeellaceae fam. nov

Citation
Mahoney-Kurpe et al. (2023). International Journal of Systematic and Evolutionary Microbiology 73 (5)
Names
Aristaeellaceae
Abstract
Two strains of Gram-negative, anaerobic, rod-shaped bacteria, from an abundant but uncharacterized rumen bacterial group of the order ‘Christensenellales’, were phylogenetically and phenotypically characterized. These strains, designated R-7T and WTE2008T, shared 98.6–99.0 % sequence identity between their 16S rRNA gene sequences. R-7T and WTE2008T clustered together on a distinct branch from other Christensenellaceae

An effector of ‘Candidatus Liberibacter asiaticus’ manipulates autophagy to promote bacterial infection

Citation
Shi et al. (2023). Journal of Experimental Botany
Names
Ca. Liberibacter asiaticus
Abstract
Abstract Autophagy functions in plant host immunity responses to pathogen infection. The molecular mechanisms and functions used by the citrus Huanglongbing (HLB)-associated intracellular bacterium ‘Candidatus Liberibacter asiaticus’ (CLas) to manipulate autophagy are unknown. We identified a CLas effector, SDE4405 (CLIBASIA_04405), which contributes to HLB progression. ‘Wanjincheng’ orange (Citrus sinensis) transgenic plants expressing SDE4405 promotes CLas proliferation and symp

Novel taxonomic and functional diversity of bacteria from the upper digestive tract of chicken

Citation
Rios-Galicia et al. (2023).
Names
Limosilactobacillus galli Limosilactobacillus avium Limosilactobacillus pulli “Clostridium anaeroviscerum” Limosilactobacillus viscerum Limosilactobacillus difficilis Ligilactobacillus hohenheimensis Clostridium butanoliproducens
Abstract
AbstractStrategies to increase the production rate of chicken for human consumption alter the natural process of microbial colonisation and the nutritional performance of the animal. The lack of sufficient reference genomes limits the interpretation of sequencing data and restrain the study of complex functions. In this study, 43 strains obtained from crop, jejunum and ileum of chicken were isolated, characterised and genome analysed to observe their metabolic profiles, adaptive strategies and t

Naming genera after geographical locations. Proposal to emend Appendix 9 of the International Code of Nomenclature of Prokaryotes

Citation
Oren, Chuvochina (2023). International Journal of Systematic and Evolutionary Microbiology 73 (5)
Names
Macondimonas Kapaibacterium
Abstract
Appendix 9, Section E of the International Code of Nomenclature of Prokaryotes provides guidelines on how to form adjectival specific and subspecific epithets that reflect the geographical location where the organism was found or studied. It does not mention ways of naming genera after geographical locations. We here propose emendation of Appendix 9 with the recommendations on how to form such names. Comments on the implementation of the current wording of Appendix 9, Section E are also made.

Candidatus List. Lists of names of prokaryotic Candidatus phyla

Citation
Oren, Göker (2023). International Journal of Systematic and Evolutionary Microbiology 73 (5)
Names
“Caldatribacteriota” “Caldipriscota” “Calescibacteriota” “Canglongiota” “Deferrimicrobiota” “Dormiibacterota” “Eremiobacterota” “Fermentibacterota” “Fervidibacterota” “Freyrarchaeota” “Geothermarchaeota” “Heilongiota” “Hermodarchaeota” “Hinthialibacterota” “Huberarchaeota” “Hydrogenedentota” “Hydrothermota” “Iainarchaeota” “Kapaibacteriota” “Krumholzibacteriota” “Kryptoniota” “Kerfeldiibacteriota” “Komeiliibacteriota” “Levyibacteriota” “Lindowiibacteriota” “Liptoniibacteriota” “Lloydiibacteriota” “Magasanikiibacteriota” “Margulisiibacteriota” “Martarchaeota” “Melainobacteriota” “Moissliibacteriota” “Montesoliibacteriota” “Nealsoniibacteriota” “Nezhaarchaeota” “Niyogiibacteriota” “Nomuraibacteriota” “Pacearchaeota” “Peregrinibacteriota” “Poribacteriota” “Portnoyibacteriota” “Ratteibacteriota” “Raymondiibacteriota” “Roizmaniibacteriota” “Rokuibacteriota” “Ryaniibacteriota” “Saganiibacteriota” “Schekmaniibacteriota” “Spechtiibacteriota” “Stahliibacteriota” “Staskawicziibacteriota” “Sungiibacteriota” “Tagaibacteriota” “Tayloriibacteriota” “Tectimicrobiota” “Terryibacteriota” “Torokiibacteriota” “Uhriibacteriota” “Vebleniibacteriota” “Wolfeibacteriota” “Woykeibacteriota” “Yanofskyibacteriota” “Yonathiibacteriota” “Zambryskiibacteriota” “Abawacaibacteriota” “Augarchaeota” “Lokiarchaeota” “Macinerneyibacteriota” “Methanomethylicota” “Moduliflexota” “Nanohalarchaeota” “Neomarinimicrobiota” “Odinarchaeota” “Paceibacterota” “Parcunitrobacterota” “Parvarchaeota” “Poseidoniota” “Qinglongiota” “Saccharimonadota” “Sifarchaeota” “Sumerlaeota” “Tianyaibacteriota” “Undinarchaeota” “Wukongarchaeota” “Babelota” “Wirthibacterota” “Rifleibacteriota” “Joergenseniibacteriota” “Kueneniibacteriota” “Jacksoniibacteriota” “Moraniibacteriota” “Shapirobacteriota” “Zixiibacteriota” Cloacimonadota Muiribacteriota “Latescibacterota” “Acetithermota” “Aenigmatarchaeota” “Aerophobota” “Altiarchaeota” “Altimarinota” “Aminicenantota”
Abstract

Endophyte mediated restoration of citrus microbiome and modulation of host defense genes against Candidatus Liberibacter asiaticus

Citation
Li et al. (2023).
Names
Ca. Liberibacter asiaticus
Abstract
Abstract Background Phloem limited non-culturable bacteria Candidatus Liberibacter asiaticus (CLas) affects the worldwide citrus production through causing citrus Huanglongbing (HLB). Despite the efficient colonization of citrus endophyte in the phloem as same niche as CLas pathogen, citrus microbiome manipulation and recruitment as well as citrus defense mechanisms in the presence of indigenous citrus endophyte against this pathogen are still unknown.Results Endophyte-mediated microbiom