Liu, Lan


Publications
12

Branched-chain amino acid specialization drove diversification within Calditenuaceae (Caldarchaeia) and enables their cultivation

Citation
Hedlund et al. (2025).
Names
“Caldarchaeia”
Abstract
Abstract Many thermophiles that are abundant in high-temperature geothermal systems have never been cultivated and are poorly understood, including deeply branching Thermoproteota. Here, we describe the genome-guided cultivation of one such organism, Calditenuis ramacidaminiphagus, and show that it has evolved a heterotrophic metabolism focused on branched-chain amino acids (BCAAs). Initially, fluorescence in situ hybridization and nanoscale secondary ion mass spectrometry (FISH-nanoSIMS
Text

Insights into chemoautotrophic traits of a prevalent bacterial phylum CSP1-3, herein Sysuimicrobiota

Citation
Liu et al. (2024). National Science Review 11 (11)
Names
32 Names
Abstract
ABSTRACT Candidate bacterial phylum CSP1-3 has not been cultivated and is poorly understood. Here, we analyzed 112 CSP1-3 metagenome-assembled genomes and showed they are likely facultative anaerobes, with 3 of 5 families encoding autotrophy through the reductive glycine pathway (RGP), Wood–Ljungdahl pathway (WLP) or Calvin-Benson-Bassham (CBB), with hydrogen or sulfide as electron donors. Chemoautotrophic enrichments from hot spring sediments and fluorescence in situ hybridizatio
Text

Cultivation of novel Atribacterota from oil well provides new insight into their diversity, ecology, and evolution in anoxic, carbon-rich environments

Citation
Jiao et al. (2024). Microbiome 12 (1)
Names
“Immundihabitans” “Immundihabitans aquiphilus” “Sediminicultor” “Sediminicultor quartus” Thermatribacter Thermatribacteraceae
Abstract
Abstract Background The Atribacterota are widely distributed in the subsurface biosphere. Recently, the first Atribacterota isolate was described and the number of Atribacterota genome sequences retrieved from environmental samples has increased significantly; however, their diversity, physiology, ecology, and evolution remain poorly understood. Results We report the isolation of the second member of Atribacterota, Th
Text

Temperature, pH, and oxygen availability contributed to the functional differentiation of ancient Nitrososphaeria

Citation
Luo et al. (2024). The ISME Journal 18 (1)
Names
“UBA164”
Abstract
Abstract Ammonia-oxidizing Nitrososphaeria are among the most abundant archaea on Earth and have profound impacts on the biogeochemical cycles of carbon and nitrogen. In contrast to these well-studied ammonia-oxidizing archaea (AOA), deep-branching non-AOA within this class remain poorly characterized because of a low number of genome representatives. Here, we reconstructed 128 Nitrososphaeria metagenome-assembled genomes from acid mine drainage and hot spring sediment metagenomes
Text

Reversed oxidative TCA (roTCA) for carbon fixation by an Acidimicrobiia strain from a saline lake

Citation
Gao et al. (2024). The ISME Journal 18 (1)
Names
Salinilacustrithrix Salinilacustritrichaceae
Abstract
Abstract Acidimicrobiia are widely distributed in nature and suggested to be autotrophic via the Calvin–Benson–Bassham (CBB) cycle. However, direct evidence of chemolithoautotrophy in Acidimicrobiia is lacking. Here, we report a chemolithoautotrophic enrichment from a saline lake, and the subsequent isolation and characterization of a chemolithoautotroph, Salinilacustristhrix flava EGI L10123T, which belongs to a new Acidimicrobiia family. Although strain EGI L10123T is autotrophi
Text