Hugenholtz, Philip


Publications
30

A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.)

Citation
Rinke et al. (2019). The ISME Journal 13 (3)
Names
Poseidoniia Thalassarchaeum betae Ts Thalassarchaeum Poseidoniaceae Poseidonia Poseidonia alphae Ts Thalassarchaeaceae Poseidoniales Ca. Poseidonaceae “Nanohalarchaeota” “Poseidoniota”
Abstract
Abstract Marine Group II (MGII) archaea represent the most abundant planktonic archaeal group in ocean surface waters, but our understanding of the group has been limited by a lack of cultured representatives and few sequenced genomes. Here, we conducted a comparative phylogenomic analysis of 270 recently available MGII metagenome-assembled genomes (MAGs) to investigate their evolution and ecology. Based on a rank-normalised genome phylogeny, we propose that MGII is an order-level

Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life

Citation
Parks et al. (2017). Nature Microbiology 2 (11)
Names
Binatus soli Ts Binatus
Abstract
AbstractChallenges in cultivating microorganisms have limited the phylogenetic diversity of currently available microbial genomes. This is being addressed by advances in sequencing throughput and computational techniques that allow for the cultivation-independent recovery of genomes from metagenomes. Here, we report the reconstruction of 7,903 bacterial and archaeal genomes from >1,500 public metagenomes. All genomes are estimated to be ≥50% complete and nearly half are ≥90% complete with ≤5%

On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria

Citation
Soo et al. (2017). Science 355 (6332)
Names
“Sericytochromatia”
Abstract
Oxygen-producing photosynthesis and oxygen-consuming respiration evolved after the divergence of the main lineages of blue-green algae.