Amann, Rudolf


Publications
16

Isolation of Crenothrix bacteria reveals the distinct ecophysiologies of filamentous methanotrophs and adaptations to redox stress

Citation
Umezawa et al. (2025).
Names
“Allocrenothrix” “Allocrenothrix methanica”
Abstract
Abstract At the dawn of modern microbiology, Cohn observed abundant filamentous bacteria in drinking water wells that he named Crenothrix polyspora . Subsequent research has revealed the methanotrophic metabolism of Crenothrix bacteria and their disproportionately high activity in stratified lakes compared to unicellular strains, yet laboratory cultivation has proven elusive, leaving the ecophysiology of Crenothrix bacteria l
Text

Metagenome-assembled genomes reveal greatly expanded taxonomic and functional diversification of the abundant marine Roseobacter RCA cluster

Citation
Liu et al. (2023). Microbiome 11 (1)
Names
Pseudoplanktomarina “Pseudoplanktomarina atlantica” Pseudoplanktomarina karensis Ts “Pseudoplanktomarina bipolaris” Planktomarina antarctica Planktomarina arctica Planktomarina forsetii Ca. Paraplanktomarina
Abstract
Abstract Background The RCA (Roseobacter clade affiliated) cluster belongs to the family Roseobacteracea and represents a major Roseobacter lineage in temperate to polar oceans. Despite its prevalence and abundance, only a few genomes and one described species, Planktomarina temperata, exist. To gain more insights into our limited understanding of this cluster and its taxonomic and functional diversity and biogeography, we screened metagenomic datasets from the gl
Text

Niche partitioning of the ubiquitous and ecologically relevant NS5 marine group

Citation
Priest et al. (2022). The ISME Journal 16 (6)
Names
“Marisimplicoccus framensis” “Marisimplicoccus” “Marivariicella” “Marivariicella framensis” “Maricapacicella” “Maricapacicella forsetii” “Arcticimaribacter” “Arcticimaribacter forsetii”
Abstract
Abstract Niche concept is a core tenet of ecology that has recently been applied in marine microbial research to describe the partitioning of taxa based either on adaptations to specific conditions across environments or on adaptations to specialised substrates. In this study, we combine spatiotemporal dynamics and predicted substrate utilisation to describe species-level niche partitioning within the NS5 Marine Group. Despite NS5 representing one of the most abundant marine flavo
Text

Niche differentiation of sulfur-oxidizing bacteria (SUP05) in submarine hydrothermal plumes

Citation
Dede et al. (2022). The ISME Journal 16 (6)
Names
Ca. Thioglobus plumae Ca. Thioglobus vadi Ca. Thioglobus vulcanius
Abstract
Abstract Hydrothermal plumes transport reduced chemical species and metals into the open ocean. Despite their considerable spatial scale and impact on biogeochemical cycles, niche differentiation of abundant microbial clades is poorly understood. Here, we analyzed the microbial ecology of two bathy- (Brothers volcano; BrV-cone and northwest caldera; NWC) and a mesopelagic (Macauley volcano; McV) plumes on the Kermadec intra-oceanic arc in the South Pacific Ocean. The microbial com
Text

Candidatus Ethanoperedens,” a Thermophilic Genus of Archaea Mediating the Anaerobic Oxidation of Ethane

Citation
Hahn et al. (2020). mBio 11 (2)
Names
Ca. Argarchaeum “Desulfofervidus auxilii” Ca. Ethanoperedens Ca. Ethanoperedens thermophilum “Caldatribacteriota”
Abstract
In the seabed, gaseous alkanes are oxidized by syntrophic microbial consortia that thereby reduce fluxes of these compounds into the water column. Because of the immense quantities of seabed alkane fluxes, these consortia are key catalysts of the global carbon cycle. Due to their obligate syntrophic lifestyle, the physiology of alkane-degrading archaea remains poorly understood. We have now cultivated a thermophilic, relatively fast-growing ethane oxidizer in partnership with a sulfate-reducing
Text