Publications
4359

Sort by date names
Browse by authors subjects journals

A novel Rickettsia, Candidatus Rickettsia takensis, and the first record of Candidatus Rickettsia laoensis in Dermacentor from Northwestern Thailand

Citation
Chaloemthanetphong et al. (2023). Scientific Reports 13 (1)
Names
“Rickettsia laoensis” Ca. Rickettsia takensis
Abstract
AbstractThree hundred and forty-four tick samples were collected from vegetation at Taksin Maharat National Park, Tak province, northwestern Thailand. They were morphologically identified and molecularly confirmed by 16S rRNA and COI genes as Dermacentor laothaiensis (n = 105), D. steini (n = 139), and D. auratus (n = 100). These ticks were examined for the spotted fever group rickettsiae (SFGRs) using PCR and DNA sequencing of six genes; 17-kDa, gltA, 16S rRNA, ompA, ompB, and sca4. Of these ti
Text

Complete Genome Sequence of “ Candidatus Phytoplasma asteris” QS2022, a Plant Pathogen Associated with Lettuce Chlorotic Leaf Rot Disease in China

Citation
Yan et al. (2023). Microbiology Resource Announcements 12 (6)
Names
Ca. Phytoplasma asteris
Abstract
The complete genome sequence of “ Candidatus Phytoplasma asteris” QS2022, which consists of one 834,303-bp circular chromosome, is presented in this work. This bacterium is associated with lettuce chlorotic leaf rot disease in Fujian Province, China.

Plant-derived, nodule-specific cysteine rich peptides inhibit growth and psyllid acquisition of ‘CandidatusLiberibacter asiaticus’, the citrus Huanglongbing bacterium

Citation
Higgins et al. (2023).
Names
Abstract
AbstractThe Asian citrus psyllid,Diaphorina citri, is a vector of ‘CandidatusLiberibacter asiaticus’ (CLas), a gram-negative, obligate biotroph whose infection inCitrusspecies is associated with citrus greening disease, or Huanglongbing (HLB). Strategies to blockCLas transmission byD. citriremain the best way to prevent the spread of the disease into new citrus growing regions. However, identifying control strategies to block HLB transmission poses significant challenges, such as the discovery a
Text

Potato psyllids mount distinct gut responses against two different ‘Candidatus Liberibacter solanacearum’ haplotypes

Citation
Tang et al. (2023). PLOS ONE 18 (6)
Names
“Liberibacter solanacearum”
Abstract
‘Candidatus Liberibacter solanacearum’ (Lso) is a bacterial pathogen infecting several crops and causing damaging diseases. Several Lso haplotypes have been identified. Among the seven haplotypes present in North America, LsoA and LsoB are transmitted by the potato psyllid, Bactericera cockerelli (Šulc), in a circulative and persistent manner. The gut, which is the first organ pathogen encounters, could be a barrier for Lso transmission. However, the molecular interactions between Lso and the ps
Text

<italic>Geminocystis urbisnovae</italic> sp. nov. (Chroococcales, Cyanobacteria): polyphasic description complemented with a survey of the family <italic>Geminocystaceae</italic>

Citation
Polyakova et al. (2023). Algae 38 (2)
Names
Geminocystis urbisnovae
Abstract
Progress in phylogenomic analysis has led to a considerable re-evaluation of former cyanobacterial system, with many new taxa being established at different nomenclatural levels. The family <i>Geminocystaceae</i> is among cyanobacterial taxa recently described on the basis of polyphasic approach. Within this family, there are six genera: <i>Geminocystis</i>, <i>Cyanobacterium</i>, <i>Geminobacterium</i>, <i>Annamia</i>, <i>Picocya
Text

Pathogenicity and Transcriptomic Analyses of Two “ Candidatus Liberibacter asiaticus” Strains Harboring Different Types of Phages

Citation
Zheng et al. (2023). Microbiology Spectrum 11 (3)
Names
Ca. Liberibacter asiaticus
Abstract
Citrus Huanglongbing (HLB), also called citrus greening disease, is a highly destructive disease threatening citrus production worldwide. “ Candidatus Liberibacter asiaticus” is one of the most common putative causal agents of HLB. Phages of “ Ca . Liberibacter asiaticus”

Comparative transcriptome profiling of susceptible and tolerant citrus species at early and late stage of infection by “Candidatus Liberibacter asiaticus”

Citation
Gao et al. (2023). Frontiers in Plant Science 14
Names
Ca. Liberibacter asiaticus
Abstract
Citrus Huanglongbing (HLB), caused by “Candidatus Liberibacter asiaticus” (CLas), is the most destructive disease threatening global citrus industry. Most commercial cultivars were susceptible to HLB, although some showed tolerant to HLB phenotypically. Identifying tolerant citrus genotypes and understanding the mechanism correlated with tolerance to HLB is essential for breeding citrus variety tolerance/resistance to HLB. In this study, the graft assay with CLas-infected bud were performed in f
Text

Synthase-selected sorting approach identifies a beta-lactone synthase in a nudibranch symbiotic bacterium

Citation
Džunková et al. (2023). Microbiome 11 (1)
Names
Doriopsillibacter californiensis Ts Doriopsillibacter Perseibacteraceae
Abstract
Abstract Background Nudibranchs comprise a group of > 6000 marine soft-bodied mollusk species known to use secondary metabolites (natural products) for chemical defense. The full diversity of these metabolites and whether symbiotic microbes are responsible for their synthesis remains unexplored. Another issue in searching for undiscovered natural products is that computational analysis of genomes of uncultured microbes can result in detection of novel biosynthe
Text

Coraliomargarita parva sp. nov., isolated from mangrove sediment and genome-based analysis of the class Opitutae revealed five novel families: Coraliomargaritaceae fam. nov., Pelagicoccaceae fam. nov., Cerasicoccaeae fam. nov., Oceanipulchritudinaceae fam. nov., and Alterococcaeae fam. nov

Citation
Min et al. (2023). Frontiers in Microbiology 14
Names
Pelagicoccaceae Coraliomargaritaceae Cerasicoccaceae Alterococcaceae
Abstract
Members of the class Opitutae are widely distributed in various environments such as rice paddy soil, freshwater lakes, seawater, marine sediment, and invertebrate digestive tracts. The class currently consists of two orders, Opitutales and Puniceicoccales, represented by the families Opitutaceae and Puniceicoccaceae, respectively, which are primarily delineated on the basis of 16S rRNA gene sequences and limited phenotypic characterizations of a few type strains. The scarcity of 16S rRNA gene a
Text