General Biochemistry, Genetics and Molecular Biology


Publications
86

The protein interactome of the citrus Huanglongbing pathogen Candidatus Liberibacter asiaticus

Citation
Carter et al. (2023). Nature Communications 14 (1)
Names
Ca. Liberibacter asiaticus
Abstract
AbstractThe bacterium Candidatus Liberibacter asiaticus (CLas) causes citrus Huanglongbing disease. Our understanding of the pathogenicity and biology of this microorganism remains limited because CLas has not yet been cultivated in artificial media. Its genome is relatively small and encodes approximately 1136 proteins, of which 415 have unknown functions. Here, we use a high-throughput yeast-two-hybrid (Y2H) screen to identify interactions between CLas proteins, thus providing insights into th

Genomic Insights into Syntrophic Lifestyle of ‘Candidatus Contubernalis alkaliaceticus’ Based on the Reversed Wood–Ljungdahl Pathway and Mechanism of Direct Electron Transfer

Citation
Frolov et al. (2023). Life 13 (10)
Names
“Contubernalis alkaliaceticus”
Abstract
The anaerobic oxidation of fatty acids and alcohols occurs near the thermodynamic limit of life. This process is driven by syntrophic bacteria that oxidize fatty acids and/or alcohols, their syntrophic partners that consume the products of this oxidation, and the pathways for interspecies electron exchange via these products or direct interspecies electron transfer (DIET). Due to the interdependence of syntrophic microorganisms on each other’s metabolic activity, their isolation in pure cultures

Globally distributed Myxococcota with photosynthesis gene clusters illuminate the origin and evolution of a potentially chimeric lifestyle

Citation
Li et al. (2023). Nature Communications 14 (1)
Names
“Houyibacterium oceanica” “Houyibacterium” “Houyibacteriaceae” “Houyihalomonas phototrophica” “Xihehalomonas phototrophica” “Xihemonas sinensis” “Kuafubacteria” “Kuafubacterium phototrophica” “Kuafucaenimonas phototrophica” “Kuafuhalomonas phototrophica” “Xihepedomonas phototrophica” “Xihelimnomonas phototrophica” “Xihecaenimonas phototrophica” “Kuafubacteriales” “Kuafubacteriaceae” “Xihehalomonas” “Xihemonas” “Xihecaenibacterium” “Houyihalomonas” “Xihelimnobacterium phototrophica” “Xihelimnobacterium” “Xihemonas phototrophica” “Xihecaenibacterium phototrophica” “Xihebacterium phototrophica” “Xihebacterium glacialis” “Xihebacterium aquatica” “Xihemicrobium phototrophica” “Xihemicrobium aquatica” “Kuafubacterium” “Xihebacterium” “Xihemicrobium” “Xihecaenimonas” “Xihelimnomonas” “Xihepedomonas” “Kuafuhalomonas” “Kuafucaenimonas”
Abstract
AbstractPhotosynthesis is a fundamental biogeochemical process, thought to be restricted to a few bacterial and eukaryotic phyla. However, understanding the origin and evolution of phototrophic organisms can be impeded and biased by the difficulties of cultivation. Here, we analyzed metagenomic datasets and found potential photosynthetic abilities encoded in the genomes of uncultivated bacteria within the phylum Myxococcota. A putative photosynthesis gene cluster encoding a type-II reaction cent

Bacterial plant pathogens affect the locomotor behavior of the insect vector: a case study of Citrus volkamerianaTriozae erytreaeCandidatus Liberibacter asiaticus system

Citation
Ameline et al. (2023). Insect Science
Names
Ca. Liberibacter asiaticus
Abstract
AbstractPlant pathogens can alter the behavior of their insect vectors as well as their survival and reproduction. The African psyllid, Trioza erytreae, is one of the vectors of Huanglongbing, a citrus disease caused mainly by “Candidatus Liberibacter asiaticus” (CLas). The purpose of this study was to characterize the effects of CLas on the psyllid, T. erytreae using Citrus volkamerina plants as the study system. The study focused more specifically on the CLas effects prior to and after its acq

Multi-heme cytochrome-mediated extracellular electron transfer by the anaerobic methanotroph ‘Candidatus Methanoperedens nitroreducens’

Citation
Zhang et al. (2023). Nature Communications 14 (1)
Names
Ca. Methanoperedens nitroreducens
Abstract
AbstractAnaerobic methanotrophic archaea (ANME) carry out anaerobic oxidation of methane, thus playing a crucial role in the methane cycle. Previous genomic evidence indicates that multi-heme c-type cytochromes (MHCs) may facilitate the extracellular electron transfer (EET) from ANME to different electron sinks. Here, we provide experimental evidence supporting cytochrome-mediated EET for the reduction of metals and electrodes by ‘Candidatus Methanoperedens nitroreducens’, an ANME acclimated to

Ecophysiology and interactions of a taurine-respiring bacterium in the mouse gut

Citation
Ye et al. (2023). Nature Communications 14 (1)
Names
Taurinivorans muris Ts Taurinivorans
Abstract
AbstractTaurine-respiring gut bacteria produce H2S with ambivalent impact on host health. We report the isolation and ecophysiological characterization of a taurine-respiring mouse gut bacterium. Taurinivorans muris strain LT0009 represents a new widespread species that differs from the human gut sulfidogen Bilophila wadsworthia in its sulfur metabolism pathways and host distribution. T. muris specializes in taurine respiration in vivo, seemingly unaffected by mouse diet and genotype, but is dep

First report of ‘Candidatus Phytoplasma asteris’ associated with yellowing, scorching and decline of almond trees in India

Citation
Gupta et al. (2023). PeerJ 11
Names
Ca. Phytoplasma Ca. Phytoplasma asteris
Abstract
The almond, a commercially important tree nut crop worldwide, is native to the Mediterranean region. Stone fruit trees are affected by at least 14 ‘Candidatus Phytoplasma’ species globally, among which ‘Candidatus Phytoplasma asteris’ is one of the most widespread phytoplasma infecting Prunus dulcis, causing aster yellows disease. Recently, almond plantations of Nauni region were consistently affected by phytoplasma, as evidenced by visible symptoms, fluorescent microscopic studies and molecular

Draft genome sequence of two “Candidatus Intestinicoccus colisanans” strains isolated from faeces of healthy humans

Citation
Zhou et al. (2023). BMC Research Notes 16 (1)
Names
Intestinicoccus colisanans Ts Intestinicoccus
Abstract
Abstract Objectives In order to provide a better insight into the functional capacity of the human gut microbiome, we isolated a novel bacterium, “Candidatus Intestinicoccus colisanans” gen. nov. sp. nov., and performed whole genome sequencing. This study will provide new insights into the functional potential of this bacterium and its role in modulating host health and well-being. We expect that this data resource will be useful in providing additional insight in