Publications
3734

Sort by date names
Browse by authors subjects journals

An essential role for tungsten in the ecology and evolution of a previously uncultivated lineage of anaerobic, thermophilic Archaea

Citation
Buessecker et al. (2022). Nature Communications 13 (1)
Names
Wolframiiraptor gerlachensis Ts Wolframiiraptor Wolframiiraptoraceae Benthortus lauensis Ts Geocrenenecus dongiae Ts Geocrenenecus arthurdayi Geocrenenecus huangii Terraquivivens ruidianensis Terraquivivens tengchongensis Terraquivivens yellowstonensis Benthortus Geocrenenecus Terraquivivens Terraquivivens tikiterensis Ts Wolframiiraptor sinensis Wolframiiraptor allenii
Abstract
AbstractTrace metals have been an important ingredient for life throughout Earth’s history. Here, we describe the genome-guided cultivation of a member of the elusive archaeal lineage Caldarchaeales (syn. Aigarchaeota), Wolframiiraptor gerlachensis, and its growth dependence on tungsten. A metagenome-assembled genome (MAG) of W. gerlachensis encodes putative tungsten membrane transport systems, as well as pathways for anaerobic oxidation of sugars probably mediated by tungsten-dependent ferredox

Recoding of stop codons expands the metabolic potential of two novel Asgardarchaeota lineages

Citation
Sun et al. (2021). ISME Communications 1 (1)
Names
Ca. Borrarchaeum weybense “Jordiarchaeum” “Jordiarchaeum madagascariense” “Sifarchaeaceae” “Jordiarchaeaceae” “Sifarchaeales” “Jordiarchaeales” “Sifarchaeia” “Jordiarchaeia” Ca. Borrarchaeaceae Ca. Borrarchaeum “Sifarchaeum” Ca. Sifarchaeum marinoarchaea Ca. Sifarchaeum subterraneus “Sifarchaeota”
Abstract
AbstractAsgardarchaeota have been proposed as the closest living relatives to eukaryotes, and a total of 72 metagenome-assembled genomes (MAGs) representing six primary lineages in this archaeal phylum have thus far been described. These organisms are predicted to be fermentative heterotrophs contributing to carbon cycling in sediment ecosystems. Here, we double the genomic catalogue of Asgardarchaeota by obtaining 71 MAGs from a range of habitats around the globe, including the deep subsurface,

Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities

Citation
Waite et al. (2020). International Journal of Systematic and Evolutionary Microbiology 70 (11)
Names
Myxococcia Polyangiia Pseudobdellovibrionaceae Bdellovibrionota Oligoflexia “Desulfofervidales” Ca. Desulfofervidaceae Ca. Desulfofervidus “Desulfofervidia” Ca. Magnetomorum “Magnetomoraceae” “Adiutricaceae” Ca. Adiutrix Myxococcota “Adiutricales”
Abstract
The class Deltaproteobacteria comprises an ecologically and metabolically diverse group of bacteria best known for dissimilatory sulphate reduction and predatory behaviour. Although this lineage is the fourth described class of the phylum Proteobacteria , it rarely affiliates with other proteobacterial classes and is freque

Asgard archaea modulate potential methanogenesis substrates in wetland soil

Citation
Valentin-Alvarado et al. (2023).
Names
“Atabeyarchaeaceae” “Atabeyarchaeales” “Freyarchaeaceae” “Freyarchaeum deiterrae” “Atabeyarchaeum” “Freyarchaeales” “Freyarchaeum” “Freyarchaeia” “Atabeyarchaeum deiterrae” Asgardarchaeota “Atabeyarchaeia”
Abstract
AbstractThe roles of Asgard archaea in eukaryogenesis and marine biogeochemical cycles are well studied, yet their contributions in soil ecosystems are unknown. Of particular interest are Asgard archaeal contributions to methane cycling in wetland soils. To investigate this, we reconstructed two complete genomes for soil-associated Atabeyarchaeia, a new Asgard lineage, and the first complete genome of Freyarchaeia, and defined their metabolismin situ. Metatranscriptomics highlights high expressi

Metagenomic discovery ofCandidatusParvarchaeales related lineages sheds light on the adaptation and diversification from neutral-thermal to acidic-mesothermal environments

Citation
Rao et al. (2022).
Names
“Haiyanarchaeum” “Jingweiarchaeales” “Jingweiarchaeum” “Parvarchaeales” “Rehaiarchaeum” “Jingweiarchaeum tengchongense” “Haiyanarchaeum thermophilum” “Rehaiarchaeum fermentans” “Parvarchaeum tengchongense” “Haiyanarchaeaceae” “Jingweiarchaeaceae”
Abstract
AbstractCandidatusParvarchaeales, representing a DPANN archaeal group with limited metabolic potentials and reliance on hosts for their growth, were initially found in acid mine drainage (AMD). Due to the lack of representatives, however, their ecological roles and adaptation to extreme habitats such as AMD, as well as how they diverge across the lineage remain largely unexplored. By applying genome-resolved metagenomics, 28Parvarchaeales-associated metagenome-assembled genomes (MAGs) representi

Metagenomic Discovery of “ Candidatus Parvarchaeales”-Related Lineages Sheds Light on Adaptation and Diversification from Neutral-Thermal to Acidic-Mesothermal Environments

Citation
Rao et al. (2023). mSystems 8 (2)
Names
“Jingweiarchaeaceae” “Rehaiarchaeum fermentans” “Parvarchaeales” “Haiyanarchaeum thermophilum” “Jingweiarchaeum tengchongense” “Parvarchaeum tengchongense” “Haiyanarchaeum” “Jingweiarchaeum” “Haiyanarchaeaceae” “Jingweiarchaeales” “Rehaiarchaeum”
Abstract
“ Candidatus Parvarchaeales” microbes may represent a lineage uniquely distributed in extreme environments such as AMD and hot springs. However, little is known about the strategies and processes of how they adapted to these extreme environments.