Publications
3676

Sort by date names
Browse by authors subjects journals

Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities

Citation
Waite et al. (2020). International Journal of Systematic and Evolutionary Microbiology 70 (11)
Names
Myxococcia Polyangiia Pseudobdellovibrionaceae Bdellovibrionota Oligoflexia “Desulfofervidales” Ca. Desulfofervidaceae Ca. Desulfofervidus “Desulfofervidia” Ca. Magnetomorum “Magnetomoraceae” “Adiutricaceae” Ca. Adiutrix Myxococcota “Adiutricales”
Abstract
The class Deltaproteobacteria comprises an ecologically and metabolically diverse group of bacteria best known for dissimilatory sulphate reduction and predatory behaviour. Although this lineage is the fourth described class of the phylum Proteobacteria , it rarely affiliates with other proteobacterial classes and is freque

Metagenomic discovery ofCandidatusParvarchaeales related lineages sheds light on the adaptation and diversification from neutral-thermal to acidic-mesothermal environments

Citation
Rao et al. (2022).
Names
“Haiyanarchaeum” “Jingweiarchaeales” “Jingweiarchaeum” “Parvarchaeales” “Rehaiarchaeum” “Jingweiarchaeum tengchongense” “Haiyanarchaeum thermophilum” “Rehaiarchaeum fermentans” “Parvarchaeum tengchongense” “Haiyanarchaeaceae” “Jingweiarchaeaceae”
Abstract
AbstractCandidatusParvarchaeales, representing a DPANN archaeal group with limited metabolic potentials and reliance on hosts for their growth, were initially found in acid mine drainage (AMD). Due to the lack of representatives, however, their ecological roles and adaptation to extreme habitats such as AMD, as well as how they diverge across the lineage remain largely unexplored. By applying genome-resolved metagenomics, 28Parvarchaeales-associated metagenome-assembled genomes (MAGs) representi

Updating the unnamed: over 20,000 new Candidatus names for unnamed taxa in GTDB release r214

Citation
Pallen (2024).
Names
Ca. Acigarchota Ca. Afuciota Ca. Bobupiota Ca. Fitepiota Ca. Hubebiota Ca. Inuciota Ca. Luxamiota Ca. Megaciota Ca. Oviciota Ca. Ucifiota Ca. Uvuciota
Abstract
Abstract Here, an established approach to the generation of well-formed arbitrary Latinate names at a scale has been adopted and adapted to name tens of thousands of new, but unnamed taxa within GTDB Release r214.1. New Latinate Candidatus names have been created and assigned to two new archaeal and twelve new bacterial phyla; six new archaeal and 48 new bacterial classes; 13 new archaeal and 158 new bacterial orders; 60 new archaeal and 597 new bacterial families; 271 new archaeal and 3

A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.)

Citation
Rinke et al. (2019). The ISME Journal 13 (3)
Names
Poseidoniia Thalassarchaeum betae Ts Thalassarchaeum Poseidoniaceae Poseidonia Poseidonia alphae Ts Thalassarchaeaceae Poseidoniales Ca. Poseidonaceae “Nanohalarchaeota” “Poseidoniota”
Abstract
Abstract Marine Group II (MGII) archaea represent the most abundant planktonic archaeal group in ocean surface waters, but our understanding of the group has been limited by a lack of cultured representatives and few sequenced genomes. Here, we conducted a comparative phylogenomic analysis of 270 recently available MGII metagenome-assembled genomes (MAGs) to investigate their evolution and ecology. Based on a rank-normalised genome phylogeny, we propose that MGII is an order-level

Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface

Citation
Probst et al. (2018). Nature Microbiology 3 (3)
Names
“Huberarchaeota” “Moissliibacteriota” “Ratteibacteriota” “Saganiibacteriota” “Torokiibacteriota” “Altiarchaeota” “Altiarchaeia” “Altiarchaeales” “Altiarchaeaceae” “Altiarchaeum hamiconexum” “Altiarchaeum”
Abstract
AbstractAn enormous diversity of previously unknown bacteria and archaea has been discovered recently, yet their functional capacities and distributions in the terrestrial subsurface remain uncertain. Here, we continually sampled a CO2-driven geyser (Colorado Plateau, Utah, USA) over its 5-day eruption cycle to test the hypothesis that stratified, sandstone-hosted aquifers sampled over three phases of the eruption cycle have microbial communities that differ both in membership and function. Geno

Metagenomic Discovery of “ Candidatus Parvarchaeales”-Related Lineages Sheds Light on Adaptation and Diversification from Neutral-Thermal to Acidic-Mesothermal Environments

Citation
Rao et al. (2023). mSystems 8 (2)
Names
“Jingweiarchaeaceae” “Rehaiarchaeum fermentans” “Parvarchaeales” “Haiyanarchaeum thermophilum” “Jingweiarchaeum tengchongense” “Parvarchaeum tengchongense” “Haiyanarchaeum” “Jingweiarchaeum” “Haiyanarchaeaceae” “Jingweiarchaeales” “Rehaiarchaeum”
Abstract
“ Candidatus Parvarchaeales” microbes may represent a lineage uniquely distributed in extreme environments such as AMD and hot springs. However, little is known about the strategies and processes of how they adapted to these extreme environments.