Search results
273


Diversity of the ‘Candidatus Phytoplasma asteris’ and ‘Candidatus Phytoplasma fraxini’ isolates that infect urban trees in Bogotá, Colombia

Citation
Franco-Lara et al. (2020). International Journal of Systematic and Evolutionary Microbiology 70 (12)
Names
Ca. Phytoplasma asteris Ca. Phytoplasma fraxini
Abstract
Phytoplasmas have been associated with a disease that affects trees of at least 11 species from different botanic families in Bogotá, Colombia. ‘Candidatus Phytoplasma asteris’ and ‘Candidatus Phytoplasma fraxini’ are the major groups of phytoplasma in the area of Bogotá. In this study, the genetic diversity within ‘Ca. P. asteris’ and ‘Ca. P. fraxini’ was studied in five urban tree species: Croton species (Euphorbiaceae), Fraxinus uhdei (Oleaceae), Magnolia grandiflora (Magnoliaceae), Populus n

Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities

Citation
Waite et al. (2020). International Journal of Systematic and Evolutionary Microbiology 70 (11)
Names
Myxococcia Polyangiia Pseudobdellovibrionaceae Bdellovibrionota Oligoflexia “Desulfofervidales” Ca. Desulfofervidaceae Ca. Desulfofervidus “Desulfofervidia” Ca. Magnetomorum “Magnetomoraceae” “Adiutricaceae” Ca. Adiutrix Myxococcota “Adiutricales”
Abstract
The class Deltaproteobacteria comprises an ecologically and metabolically diverse group of bacteria best known for dissimilatory sulphate reduction and predatory behaviour. Although this lineage is the fourth described class of the phylum Proteobacteria , it rarely affiliates with other proteobacterial classes and is freque

Aliikangiella coralliicola sp. nov., a bacterium isolated from coral Porites lutea, and proposal of Pleioneaceae fam. nov. to accommodate Pleionea and Aliikangiella

Citation
Wang et al. (2020). International Journal of Systematic and Evolutionary Microbiology 70 (11)
Names
Pleionea Pleioneaceae
Abstract
A novel Gram-stain-negative, non-endospore-forming, motile, and aerobic bacterial strain, M105T, was isolated from coral Porites lutea, and was subjected to a polyphasic taxonomic study. Global alignment based on 16S rRNA gene sequences indicated that M105T shares the highest sequence identity of 94.5 % with Aliikangiella marina GYP-15T. The average nucleotide identity (ANI) and average amino acid identity (A

List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ

Citation
Parte et al. (2020). International Journal of Systematic and Evolutionary Microbiology 70 (11)
Names
“Adiutricales” “Desulfofervidales”
Abstract
The List of Prokaryotic names with Standing in Nomenclature (LPSN) was acquired in November 2019 by the DSMZ and was relaunched using an entirely new production system in February 2020. This article describes in detail the structure of the new site, navigation, page layout, search facilities and new features.

Proposal of 'Candidatus Frankia alpina', the uncultured symbiont of Alnus alnobetula and A. incana that forms spore-containing nitrogen-fixing root nodules

Citation
Pozzi et al. (2020). International Journal of Systematic and Evolutionary Microbiology 70 (10)
Names
Ca. Frankia alpina
Abstract
The members of the genus Frankia are, with a few exceptions, a group of nitrogen-fixing symbiotic actinobacteria that nodulate mostly woody dicotyledonous plants belonging to three orders, eight families and 23 genera of pioneer dicots. These bacteria have been characterized phylogenetically and grouped into four molecular clusters. One of the clusters, cluster 1 contains strains that induce nodules on Alnus

Lists of names of prokaryotic Candidatus taxa

Citation
Oren et al. (2020). International Journal of Systematic and Evolutionary Microbiology 70 (7)
Names
“Huberarchaeum crystalense” “Huberarchaeum” Ca. Allofontibacter Ca. Allofontibacter communis “Fermentibacteria” Ca. Fermentibacter danicus Ca. Fermentibacter Ca. Fermentibacteraceae “Fermentibacterales” “Methanofastidiosia” Ca. Methanofastidiosum Ca. Methanofastidiosum methylothiophilum Ca. Carsonella Ca. Carsonella ruddii “Altiarchaeum” Ca. Methylumidiphilus alinenensis Ca. Caldarchaeum Kryptonium thompsonii Ts “Sulfuripaludibacter” “Sulfuritelmatobacter” Sulfuritelmatomonas “Izemoplasma acidinucleici” Cloacimonas acidaminivorans Ts Cloacimonas Ca. Methanomethylicia Ca. Methanomethylicus Ca. Methanomethylicus mesodigestus Ca. Methanomethylicus oleisabuli “Methanosuratincola petrocarbonis” “Methanosuratincola” Ca. Branchiomonas cystocola Kapaibacterium Kapaibacterium thiocyanatum Ts Muiribacterium halophilum Ts Promineifilum Promineifilum breve Ts “Accumulibacter aalborgensis” “Acetithermum autotrophicum” “Aciduliprofundum boonei” “Actinochlamydia clariatis” “Actinochlamydia pangasianodontis” “Actinomarina minuta” “Adiacens aphidicola” “Aenigmatarchaeum subterraneum” “Aerophobus profundus” “Allobeggiatoa salina” “Allocryptoplasma californiense” “Allospironema culicis” “Altiarchaeum hamiconexum” “Altimarinus pacificus” “Aminicenans sakinawicola” “Amoebinatus massiliensis” “Amoebophilus asiaticus” “Amphibiichlamydia ranarum” “Amphibiichlamydia salamandrae” “Anammoxiglobus propionicus” “Anammoximicrobium moscoviense” “Aquiluna rubra” “Atelocyanobacterium thalassae” “Bandiella euplotis” “Blochmanniella camponoti” “Blochmanniella floridana” “Blochmanniella myrmotrichis” “Blochmanniella pennsylvanica” “Blochmanniella vafra” “Brevifilum fermentans” “Brocadia anammoxidans” “Brocadia sapporonensis” “Caenarcanum bioreactoricola” “Caldarchaeum subterraneum” “Caldatribacterium californiense” “Caldatribacterium saccharofermentans” “Calditenuis aerorheumatis” “Calescibacterium nevadense” “Captivus acidiprotistae” “Carbonibacillus altaicus” “Cardinium hertigii” “Catenimonas italica” “Cenarchaeum symbiosum” “Chloranaerofilum corporosum” “Chloroploca asiatica” “Chlorotrichoides halophilum” “Chryseopegocella kryptomonas” “Clavichlamydia salmonicola” “Cochliopodiiphilus cryoturris” “Combothrix italica” “Competibacter denitrificans” “Competibacter phosphatis” “Consessor aphidicola” “Contendibacter odensensis” “Contubernalis alkaliaceticus” “Criblamydia sequanensis” “Criblamydia” “Cryptoprodota polytropus” “Curculioniphilus buchneri” “Cyrtobacter comes” “Dactylopiibacterium carminicum” “Desulfofervidus auxilii” “Desulfonatronobulbus propionicus” “Doolittlea endobia” “Ecksteinia adelgidicola” “Electronema nielsenii” “Electronema palustre” Electrothrix arhusiensis Electrothrix communis Ts “Electrothrix japonica” “Electrothrix marina” “Endecteinascidia fromenterensis” “Endobugula glebosa” “Endobugula sertula” “Endolissoclinum faulkneri” “Endonucleibacter bathymodioli” “Endoriftia persephonae” “Endowatersipora glebosa” “Entotheonella factor” “Entotheonella palauensis” “Entotheonella serta” “Epixenosoma ejectans” “Epulonipiscioides gigas” “Epulonipiscioides saccharophilum” “Epulonipiscium fischelsonii” Fervidibacter sacchari Ts “Finniella inopinata” “Finniella lucida” “Finniella” “Flaviluna lacus” “Fodinibacter communicans” “Fokinia crypta” “Fokinia solitaria” “Fritschea bemisiae” “Fritschea eriococci” “Fukatsuia symbiotica” “Galacturonatibacter soehngenii” “Mariprofundia” “Moduliflexia” “Thermofontia” “Vecturitrichia” “Actinomarinales” “Altiarchaeales” “Gastranaerophilales” “Moduliflexales” “Nitrosocaldales” “Vecturitrichales” “Accumulibacter phosphatis” Sulfuritelmatomonas gaucii Ts Electronema aureum Ts Electronema Electrothrix Fervidibacter
Abstract
We here present annotated lists of names ofCandidatustaxa of prokaryotes with ranks between subspecies and class, proposed between the mid-1990s, when the provisional status ofCandidatustaxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names ofCandidatustaxa with additio

Amycolatopsis anabasis sp. nov., a novel endophytic actinobacterium isolated from roots of Anabasis elatior

Citation
Wang et al. (2020). International Journal of Systematic and Evolutionary Microbiology 70 (5)
Names
Amycolatopsis anabasis
Abstract
A novel endophytic actinobacterium, designated strain EGI 650086T, was isolated from the roots of Anabasis elatior (C.A.Mey.) Schischk. collected in Xinjiang, north-west China. The taxonomic position of the strain was investigated using a polyphasic taxonomic approach. Growth occurred at 15–40 °C, pH 6.0–8.0 and in the presence of 0–6 % NaCl (w/v). Phylogenetic analysis based on 16S rRNA gene sequence and concatenation of 22 protein marker genes revealed that strain EGI 650086T formed a monophyl

Zhaonella formicivorans gen. nov., sp. nov., an anaerobic formate-utilizing bacterium isolated from Shengli oilfield, and proposal of four novel families and Moorellales ord. nov. in the phylum Firmicutes

Citation
Lv et al. (2020). International Journal of Systematic and Evolutionary Microbiology 70 (5)
Names
Moorellales Calderihabitantaceae Desulfitibacteraceae Moorellaceae
Abstract
A novel obligately anaerobic, thermophilic and formate-utilizing bacterium K32T was isolated from Shengli oilfield of China. Cells were straight rods (0.4–0.8 µm × 2.5–8.0 µm), Gram-stain-positive, non-spore-forming and slightly motile. Optimum growth occurred with pH of 7 and 0.5 g l–1 NaCl under temperature of 55–60 °C. Nitrate could be reduced into nitrite, syntrophic formate oxidation to methane and carbon dioxide occurred when co-culturing strain K32T and

All ANIs are not created equal: implications for prokaryotic species boundaries and integration of ANIs into polyphasic taxonomy

Citation
Palmer et al. (2020). International Journal of Systematic and Evolutionary Microbiology 70 (4)
Names
Abstract
In prokaryotic taxonomy, a set of criteria is commonly used to delineate species. These criteria are generally based on cohesion at the phylogenetic, phenotypic and genomic levels. One such criterion shown to have promise in the genomic era is average nucleotide identity (ANI), which provides an average measure of similarity across homologous regions shared by a pair of genomes. However, despite the popularity and relative ease of using this metric, ANI has undergone numerous refinements, with v