Jiao, Jian-Yu


Publications
13

CitationNamesAbstract
Genome-guided isolation of the hyperthermophilic aerobe Fervidibacter sacchari reveals conserved polysaccharide metabolism in the Armatimonadota Nou et al. (2024). Nature Communications 15 (1) “Thermosaccharophagus gerlachensis” “Fervidibacter canadensis” “Thermosaccharophagus yellowstonensis” “Fervidibacter sacchari” “Fervidibacteria” “Fervidibacterales” “Fervidibacteraceae” “Fervidibacter” “Thermosaccharophagaceae” “Thermosaccharophagus” “Caldisaccharidevorator sinensis” “Fervidibacter sinensis” “Fervidibacter japonicus” “Caldisaccharidevorator” “Caldisaccharidevorator malaysiensis” “Thermosaccharophagus tengchongensis”
Insights into chemoautotrophic traits of a prevalent bacterial phylum CSP1-3, herein Sysuimicrobiota Liu et al. (2024). National Science Review “Sysuimicrobium” “Segetimicrobium genomatis” “Segetimicrobium” “Geohabitans” “Sysuimicrobium tengchongense” “Fervidifonticultor quartus” “Fervidifonticultor secundus” “Humicultor” “Kaftiobacterium” “Segetimicrobiaceae” “Geohabitans tengchongensis” “Sysuimicrobiia” “Sysuimicrobiota” “Sysuimicrobiales” “Sysuimicrobiaceae” “Kaftiobacterium secundum” “Kaftiobacteriaceae” “Thermofontivivens” “Thermofontiviventaceae” “Thermofontivivens primus” “Tepidifontimicrobium thermophilum” “Tepidifontimicrobium” “Caldifonticola” “Sysuimicrobium calidum” “Fervidifonticultor tertius” “Fervidifonticultor” “Humicultoraceae” “Calidihabitans tengchongensis” “Calidihabitans” “Caldifonticola tengchongensis” “Humicultor tengchongensis” “Fervidifonticultor primus”
Cultivation of novel Atribacterota from oil well provides new insight into their diversity, ecology, and evolution in anoxic, carbon-rich environments Jiao et al. (2024). Microbiome 12 (1) “Oleincola secundus” “Atribacter hydrocarboniphilus” “Profundicultor thermophilus” “Sordicultor fermentans” “Stramentimicrobium fermentans” “Infernicultor aquiphilus” “Sediminicultor sextus” “Sediminicultor quintus” “Sediminicultor quartus” “Sediminicultor tertius” “Sediminicultor secundus” “Sediminicultor” “Immundihabitans aquiphilus” “Phoenicimicrobiales” “Atribacter allofermentans” “Atribacter alterifermentans” “Atribacter fermentans” “Caldatribacterium thermophilum” “Nitricultor siberiensis” “Nitricultor lacus” “Caldatribacterium caloriphilum” “Profundicultor aquiphilus” “Profundicultor” “Sordicultor aquaticus” “Sordicultor” “Nitricultor” “Phoenicimicrobiia” “Stramentimicrobiaceae” “Stramentimicrobium” “Oleincola” “Phoenicimicrobiaceae” “Phoenicimicrobium” “Phoenicimicrobium oleiphilum” “Immundihabitans” “Infernicultor”
Metagenomic Discovery of “ Candidatus Parvarchaeales”-Related Lineages Sheds Light on Adaptation and Diversification from Neutral-Thermal to Acidic-Mesothermal Environments Rao et al. (2023). mSystems 8 (2) “Jingweiarchaeaceae” “Rehaiarchaeum fermentans” “Parvarchaeales” “Haiyanarchaeum thermophilum” “Jingweiarchaeum tengchongense” “Parvarchaeum tengchongense” “Haiyanarchaeum” “Jingweiarchaeum” “Haiyanarchaeaceae” “Jingweiarchaeales” “Rehaiarchaeum”
Hyperactive nanobacteria with host-dependent traits pervade Omnitrophota Seymour et al. (2023). Nature Microbiology 8 (4) “Zapsychrus unditaenarius” Velaminicoccus archaeovorus Ts Velaminicoccus “Multiplicimicrobium” “Fredricksoniimonas aquilentivivens” “Amyimicrobium” “Omnitrophia” “Omnitrophales” “Omnitrophaceae” “Pluralincolimonas frigidipaludosa” “Fontincolimonas calida” “Profunditerraquicola sanfordiae” “Fredricksoniimonas borealis” “Duberdicusella sinuisediminis” “Phelpsiimicrobium noxiivivens” “Velesiimonas alkalicola” “Aquitaenariimonas noxiae” “Aquincolibacterium aerophilum” “Aquincolibacterium lacustre” “Multiplicimicrobium inquinatum” “Pegaeibacterium caenilacustre” “Danuiimicrobium aquiferis” “Taenariivivens baikalensis” “Aquivivens invisus” “Abzuiibacterium crystallinum” “Makaraimicrobium” “Aquincolibacterium” “Pegaeibacterium” “Aquivivens” “Duberdicusellaceae” “Pluralincolimonadaceae” “Taenariiviventaceae” “Aquincolibacteriaceae” “Aquiviventaceae” “Duberdicusellales” “Ghiorseimicrobiales” “Aquitaenariimonadales” “Velesiimonadales” “Aquiviventales” “Undivivens” “Taenaricolales” “Undivivens industriae” “Sherwoodlollariibacterium unditelluris” “Sherwoodlollariibacterium” “Fontincolimonas” “Aquitaenariimonadaceae” “Profunditerraquicola” “Profunditerraquicolaceae” “Amyimicrobium silvilacustre” “Ghiorseimicrobiaceae” “Ghiorseimicrobium” “Ghiorseimicrobium undicola” “Fredricksoniimonadaceae” “Fredricksoniimonas” “Phelpsiimicrobium” “Pluralincolimonadales” “Duberdicusella” “Velesiimonadaceae” “Velesiimonas” “Taenaricolaceae” “Taenaricola” “Taenaricola geysiri” “Pluralincolimonas” “Aquitaenariimonas” “Makaraimicrobium thalassicum” “Taenariivivens” “Danuiimicrobiaceae” “Danuiimicrobium” “Aquiviventia” “Abzuiibacterium” “Abzuiibacteriaceae” Omnitrophus Omnitrophus fodinae Ts Omnitrophota
Metagenomic discovery ofCandidatusParvarchaeales related lineages sheds light on the adaptation and diversification from neutral-thermal to acidic-mesothermal environments Rao et al. (2022). “Haiyanarchaeum” “Jingweiarchaeales” “Jingweiarchaeum” “Parvarchaeales” “Rehaiarchaeum” “Jingweiarchaeum tengchongense” “Haiyanarchaeum thermophilum” “Rehaiarchaeum fermentans” “Parvarchaeum tengchongense” “Haiyanarchaeaceae” “Jingweiarchaeaceae”
An essential role for tungsten in the ecology and evolution of a previously uncultivated lineage of anaerobic, thermophilic Archaea Buessecker et al. (2022). Nature Communications 13 (1) Wolframiiraptor gerlachensis Ts Wolframiiraptor Wolframiiraptoraceae Benthortus lauensis Ts Geocrenenecus dongiae Ts Geocrenenecus arthurdayi Geocrenenecus huangii Terraquivivens ruidianensis Terraquivivens tengchongensis Terraquivivens yellowstonensis Benthortus Geocrenenecus Terraquivivens Terraquivivens tikiterensis Ts Wolframiiraptor sinensis Wolframiiraptor allenii
Comparative Genomics Reveals Thermal Adaptation and a High Metabolic Diversity in “ Candidatus Bathyarchaeia” Qi et al. (2021). mSystems 6 (4) Bathyarchaeia
Deciphering Symbiotic Interactions of “ Candidatus Aenigmarchaeota” with Inferred Horizontal Gene Transfers and Co-occurrence Networks Li et al. (2021). mSystems 6 (4) Ca. Aenigmarchaeota
Deciphering symbiotic interactions of ‘Candidatus Aenigmarchaeota’ with inferred horizontal gene transfers and co-occurrence networks Li et al. (2020). Ca. Aenigmarchaeota