Publications
3732

Sort by date names
Browse by authors subjects journals

Genome reduction and horizontal gene transfer in the evolution of Endomicrobia—rise and fall of an intracellular symbiosis with termite gut flagellates

Citation
Mies et al. (2024). mBio
Names
Ruminimicrobium bovinum Ts Ruminimicrobiellum ovillum Endomicrobiellum Ectomicrobium Parendomicrobium Ectomicrobium neotermitis Ts Parendomicrobium reticulitermitis Ts Ruminimicrobiellum bubulum Ts Ruminimicrobiellum caprinum Ruminimicrobiellum tauri Praeruminimicrobium Proruminimicrobium Ruminimicrobium Ruminimicrobiellum Endomicrobiellum devescovinae Proruminimicrobium quisquiliarum Ts Praeruminimicrobium purgamenti Ts Endomicrobiellum agilis Endomicrobiellum siamense Endomicrobiellum basalitermitum Endomicrobiellum guadaloupense Endomicrobiellum meruensis Endomicrobium embiratermitis Endomicrobium labiotermitis Endomicrobium neocapritermitis Endomicrobium macrotermitis Endomicrobium procryptotermitis Endomicrobiellum dinenymphae Endomicrobiellum trichonymphae Ts Endomicrobiellum pyrsonymphae Endomicrobiellum neotermitis Endomicrobiellum mastotermitis Endomicrobiellum calonymphae Endomicrobiellum cryptotermitis Endomicrobiellum roisinitermitis Endomicrobiellum incisitermitis Endomicrobiellum porotermitis Endomicrobiellum cubanum Endomicrobiellum africanum
Abstract
ABSTRACT Bacterial endosymbionts of eukaryotic hosts typically experience massive genome reduction, but the underlying evolutionary processes are often obscured by the lack of free-living relatives. Endomicrobia, a family-level lineage of host-associated bacteria in the phylum Elusimicrobiota that comprises both free-living representatives and endosymbionts of termite gut flagellates, are an excellent model to study e

Globally distributed Myxococcota with photosynthesis gene clusters illuminate the origin and evolution of a potentially chimeric lifestyle

Citation
Li et al. (2023). Nature Communications 14 (1)
Names
“Houyibacterium oceanica” “Houyibacterium” “Houyibacteriaceae” “Houyihalomonas phototrophica” “Xihehalomonas phototrophica” “Xihemonas sinensis” “Kuafubacteria” “Kuafubacterium phototrophica” “Kuafucaenimonas phototrophica” “Kuafuhalomonas phototrophica” “Xihepedomonas phototrophica” “Xihelimnomonas phototrophica” “Xihecaenimonas phototrophica” “Kuafubacteriales” “Kuafubacteriaceae” “Xihehalomonas” “Xihemonas” “Xihecaenibacterium” “Houyihalomonas” “Xihelimnobacterium phototrophica” “Xihelimnobacterium” “Xihemonas phototrophica” “Xihecaenibacterium phototrophica” “Xihebacterium phototrophica” “Xihebacterium glacialis” “Xihebacterium aquatica” “Xihemicrobium phototrophica” “Xihemicrobium aquatica” “Kuafubacterium” “Xihebacterium” “Xihemicrobium” “Xihecaenimonas” “Xihelimnomonas” “Xihepedomonas” “Kuafuhalomonas” “Kuafucaenimonas”
Abstract
AbstractPhotosynthesis is a fundamental biogeochemical process, thought to be restricted to a few bacterial and eukaryotic phyla. However, understanding the origin and evolution of phototrophic organisms can be impeded and biased by the difficulties of cultivation. Here, we analyzed metagenomic datasets and found potential photosynthetic abilities encoded in the genomes of uncultivated bacteria within the phylum Myxococcota. A putative photosynthesis gene cluster encoding a type-II reaction cent

Cultivation of novel Atribacterota from oil well provides new insight into their diversity, ecology, and evolution in anoxic, carbon-rich environments

Genomic Insights Into the Archaea Inhabiting an Australian Radioactive Legacy Site

Citation
Vázquez-Campos et al. (2021). Frontiers in Microbiology 12
Names
“Nanoarchaeia” Ca. Tiddalikarchaeales Ca. Micrarchaeia “Tiddalikarchaeum” Ca. Norongarragalinales Ca. Micrarchaeales Ca. Norongarragalinaceae Ca. Micrarchaeaceae Ca. Norongarragalina meridionalis Ca. Anstonellales Ca. Norongarragalina Ca. Bilamarchaeaceae Ca. Bilamarchaeum dharawalense Ca. Anstonella Ca. Bilamarchaeum Ca. Burarchaeales Ca. Anstonellaceae Ca. Burarchaeaceae Ca. Anstonella stagnisolia Ca. Burarchaeum australiense Ca. Burarchaeum Ca. Gugararchaeales Ca. Gugararchaeum Ca. Gugararchaeaceae “Gugararchaeum adminiculabundum” Ca. Tiddalikarchaeaceae “Tiddalikarchaeum anstoanum” Ca. Methanoperedenaceae Ca. Methanoperedens Ca. Micrarchaeota
Abstract
During the 1960s, small quantities of radioactive materials were co-disposed with chemical waste at the Little Forest Legacy Site (LFLS, Sydney, Australia). The microbial function and population dynamics in a waste trench during a rainfall event have been previously investigated revealing a broad abundance of candidate and potentially undescribed taxa in this iron-rich, radionuclide-contaminated environment. Applying genome-based metagenomic methods, we recovered 37 refined archaeal MAGs, mainly

Distribution, abundance, and ecogenomics of the Palauibacterales , a new cosmopolitan thiamine-producing order within the Gemmatimonadota phylum

Citation
Aldeguer-Riquelme et al. (2023). mSystems
Names
Palauibacteraceae Palauibacterales Palauibacter Benthicola Humimonas Caribbeanibacter Carthagonibacter Indicimonas Kutchimonas Humimonas hydrogenitrophica Ts Caribbeanibacter nitroreducens Ts Benthicola marisminoris Ts Indicimonas acetifermentans Ts Benthicola azotiphorus Palauibacter soopunensis Ts Palauibacter scopulicola Palauibacter rhopaloidicola Palauibacter poriticola Palauibacter australiensis Palauibacter irciniicola Palauibacter denitrificans Carthagonibacter metallireducens Ts Kutchimonas denitrificans Ts Palauibacter polyketidifaciens Palauibacter ramosifaciens
Abstract
ABSTRACT The phylum Gemmatimonadota comprises mainly uncultured microorganisms that inhabit different environments such as soils, freshwater lakes, marine sediments, sponges, or corals. Based on 16S rRNA gene studies, the group PAUC43f is one of the most frequently retrieved Gemmatimonadota in marine samples. However, its physiology and ecological roles are completely unknown since, to date, not a single PAUC43f isolate or me

New globally distributed bacterial phyla within the FCB superphylum

Citation
Gong et al. (2022). Nature Communications 13 (1)
Names
“Orphanbacterum longqiense” “Joyebacterota” “Arandabacteraceae” “Arandabacterota” “Arandabacterales” “Arandabacteria” “Orphanbacterum” “Arandabacterum bohaiense” “Blakebacterota” “Orphanbacteraceae” “Joyebacterum haimaense” “Blakebacterum guaymasense” “Orphanbacterales” “Joyebacterum” “Blakebacterum” “Orphanbacteria” “Joyebacteraceae” “Blakebacteraceae” “Orphanbacterota” “Joyebacterales” “Blakebacterales” “Arandabacterum” “Joyebacteria” “Blakebacteria”
Abstract
AbstractMicrobes in marine sediments play crucial roles in global carbon and nutrient cycling. However, our understanding of microbial diversity and physiology on the ocean floor is limited. Here, we use phylogenomic analyses of thousands of metagenome-assembled genomes (MAGs) from coastal and deep-sea sediments to identify 55 MAGs that are phylogenetically distinct from previously described bacterial phyla. We propose that these MAGs belong to 4 novel bacterial phyla (Blakebacterota, Orphanbact