Chuvochina, Maria


Publications
18

Proposal of Patescibacterium danicum gen. Nov., sp. nov. in the ubiquitous ultrasmall bacterial phylum Patescibacteriota phyl. Nov

Citation
Dutkiewicz et al. (2024). ISME Communications
Names
“Patescibacterium danicum” Ca. Patescibacteria “Patescibacteriota” “Patescibacteriia” “Patescibacteriales” “Patescibacteriaceae” “Patescibacterium”
Abstract
Abstract Candidatus Patescibacteria is a diverse bacterial phylum that is notable for members with ultrasmall cell size, reduced genomes, limited metabolic capabilities and dependence on other prokaryotic hosts. Despite the prevalence of the name Ca. Patescibacteria in the scientific literature, it is not officially recognized under the International Code of Nomenclature of Prokaryotes (ICNP) and lacks a nomenclatural type. Here, we rectify this situation by describing two closely

Machine learning and metagenomics identifies uncharacterized taxa inferred to drive biogeochemical cycles in a subtropical hypereutrophic estuary

Citation
Prabhu et al. (2024). ISME Communications 4 (1)
Names
“Hypereutrophica” “Hypereutrophica brisbanensis” Salinivivens Nitrosopumilus brisbanensis Eutrophomonas brisbanensis Ts Salinivivens marinus Ts Eutrophovita Eutrophosalina Eutrophomonas Salsuginivita brisbanensis Ts Eutrophobiales Eutrophovitaceae Eutrophocola Eutrophocola salsuginis Ts Eutrophobiaceae Eutrophobius Eutrophobius brisbanensis Ts Eutrophomonadaceae Eutrophovita brisbanensis Ts Salivitaceae Salivita Salivita marina Ts Salsuginivita Eutrophosalina marina Ts Marisalimonadaceae Marisalimonas Australimonadales Australimonadaceae Australimonas brisbanensis Ts Marisalimonas marina Ts Australimonas
Abstract
Abstract Anthropogenic influences have drastically increased nutrient concentrations in many estuaries globally, and microbial communities have adapted to the resulting hypereutrophic ecosystems. However, our knowledge of the dominant microbial taxa and their potential functions in these ecosystems has remained sparse. Here, we study prokaryotic community dynamics in a temporal–spatial dataset, from a subtropical hypereutrophic estuary. Screening 54 water samples across brackish t

Proposal of names for 329 higher rank taxa defined in the Genome Taxonomy Database under two prokaryotic codes

Citation
Chuvochina et al. (2023). FEMS Microbiology Letters
Names
Methyloligellaceae Rhodomicrobiaceae Leptospiria Alicyclobacillia Natranaerobiia Jeotgalibacillaceae Brevinematia Amphibacillaceae Chitinimonas Chitinimonadaceae Marinicellaceae Ahniellaceae Pseudohongiellaceae Methanoculleaceae Methanofollaceae Methanosphaerulaceae Methanocellia Methanosarcinia Methanonatronarchaeia Methanoliparia Halobacteriota Exiguobacteriales Exiguobacteriaceae Salinicoccaceae Staphylococcales Gemellaceae Thermicanales Thermicanaceae Neiellaceae Oceanococcaceae Wohlfahrtiimonadaceae Thermaerobacteria Thermaerobacterales Thermaerobacteraceae Sedimentibacteraceae Proteiniboraceae Monoglobaceae Monoglobales Lutisporaceae Lutisporales Lachnospirales Christensenellales Caldicoprobacterales Caldicellulosiruptoraceae Caldicellulosiruptorales Oxobacteraceae Caloramatoraceae Acetivibrionaceae Acetivibrio Acetivibrionales Clostridiisalibacter Clostridiisalibacteraceae Caldisalinibacter Dethiosulfatibacteraceae Thermincolales Thermincolia Carboxydocellales Carboxydocellaceae Tindalliaceae Thermotaleaceae Natronincolaceae Filifactoraceae Caminicellaceae Anaerovoracaceae Peptostreptococcales Acidaminobacteraceae Mahellales Mahellaceae Thermosulfidibacterota Thermosulfidibacteria Thermosulfidibacterales Thermosulfidibacteraceae Elainellaceae Elainellales Phormidesmidaceae Phormidesmidales Hydrogenothermales Desulfurobacteriia “Paceibacteria” Vampirovibrionaceae Vampirovibrionales Vampirovibrionia Binataceae Binatales Binatia Hydrothermia Hydrothermales Hydrothermaceae Azobacteroidaceae Bipolaricaulales Bipolaricaulaceae Bipolaricaulia Hepatobacteraceae Hepatoplasmataceae Johnevansiaceae Johnevansiales Kapaibacteriaceae Kapaibacteriales Magnetobacteriaceae Methylomirabilaceae Methylomirabilales Methylomirabilia Muiribacteriaceae Muiribacteriales Muiribacteriia Nucleicultricaceae Obscuribacteraceae Promineifilaceae Promineifilales Pseudothioglobaceae Puniceispirillaceae Puniceispirillales Saccharimonadaceae Saccharimonadales Tenderiaceae Tenderiales Thermobaculaceae Thermobaculales Desulforudaceae Methylomirabilota Cloacimonadia Cloacimonadales Cloacimonadaceae Kapaibacteriia “Poriferisulfidales” Leptolyngbyaceae
Abstract
Abstract The Genome Taxonomy Database (GTDB) is a taxonomic framework that defines prokaryotic taxa as monophyletic groups in concatenated protein reference trees according to systematic criteria. This has resulted in a substantial number of changes to existing classifications (https://gtdb.ecogenomic.org). In the case of union of taxa, GTDB names were applied based on the priority of publication. The division of taxa or change in rank led to the formation of new Latin names above

Naming genera after geographical locations. Proposal to emend Appendix 9 of the International Code of Nomenclature of Prokaryotes

Citation
Oren, Chuvochina (2023). International Journal of Systematic and Evolutionary Microbiology 73 (5)
Names
Macondimonas Kapaibacterium
Abstract
Appendix 9, Section E of the International Code of Nomenclature of Prokaryotes provides guidelines on how to form adjectival specific and subspecific epithets that reflect the geographical location where the organism was found or studied. It does not mention ways of naming genera after geographical locations. We here propose emendation of Appendix 9 with the recommendations on how to form such names. Comments on the implementation of the current wording of Appendix 9, Section E are also made.

Hyperactive nanobacteria with host-dependent traits pervade Omnitrophota

Citation
Seymour et al. (2023). Nature Microbiology 8 (4)
Names
“Zapsychrus unditaenarius” Velaminicoccus archaeovorus Ts Velaminicoccus “Multiplicimicrobium” “Fredricksoniimonas aquilentivivens” “Amyimicrobium” “Omnitrophia” “Omnitrophales” “Omnitrophaceae” “Pluralincolimonas frigidipaludosa” “Fontincolimonas calida” “Profunditerraquicola sanfordiae” “Fredricksoniimonas borealis” “Duberdicusella sinuisediminis” “Phelpsiimicrobium noxiivivens” “Velesiimonas alkalicola” “Aquitaenariimonas noxiae” “Aquincolibacterium aerophilum” “Aquincolibacterium lacustre” “Multiplicimicrobium inquinatum” “Pegaeibacterium caenilacustre” “Danuiimicrobium aquiferis” “Taenariivivens baikalensis” “Aquivivens invisus” “Abzuiibacterium crystallinum” “Makaraimicrobium” “Aquincolibacterium” “Pegaeibacterium” “Aquivivens” “Duberdicusellaceae” “Pluralincolimonadaceae” “Taenariiviventaceae” “Aquincolibacteriaceae” “Aquiviventaceae” “Duberdicusellales” “Ghiorseimicrobiales” “Aquitaenariimonadales” “Velesiimonadales” “Aquiviventales” “Undivivens” “Taenaricolales” “Undivivens industriae” “Sherwoodlollariibacterium unditelluris” “Sherwoodlollariibacterium” “Fontincolimonas” “Aquitaenariimonadaceae” “Profunditerraquicola” “Profunditerraquicolaceae” “Amyimicrobium silvilacustre” “Ghiorseimicrobiaceae” “Ghiorseimicrobium” “Ghiorseimicrobium undicola” “Fredricksoniimonadaceae” “Fredricksoniimonas” “Phelpsiimicrobium” “Pluralincolimonadales” “Duberdicusella” “Velesiimonadaceae” “Velesiimonas” “Taenaricolaceae” “Taenaricola” “Taenaricola geysiri” “Pluralincolimonas” “Aquitaenariimonas” “Makaraimicrobium thalassicum” “Taenariivivens” “Danuiimicrobiaceae” “Danuiimicrobium” “Aquiviventia” “Abzuiibacterium” “Abzuiibacteriaceae” Omnitrophus Omnitrophus fodinae Ts Omnitrophota
Abstract
AbstractCandidate bacterial phylum Omnitrophota has not been isolated and is poorly understood. We analysed 72 newly sequenced and 349 existing Omnitrophota genomes representing 6 classes and 276 species, along with Earth Microbiome Project data to evaluate habitat, metabolic traits and lifestyles. We applied fluorescence-activated cell sorting and differential size filtration, and showed that most Omnitrophota are ultra-small (~0.2 μm) cells that are found in water, sediments and soils. Omnitro

SeqCode: a nomenclatural code for prokaryotes described from sequence data

Citation
Hedlund et al. (2022). Nature Microbiology
Names
Kryptonium mobile Kryptoniaceae Kryptoniia Kryptoniales
Abstract
AbstractMost prokaryotes are not available as pure cultures and therefore ineligible for naming under the rules and recommendations of the International Code of Nomenclature of Prokaryotes (ICNP). Here we summarize the development of the SeqCode, a code of nomenclature under which genome sequences serve as nomenclatural types. This code enables valid publication of names of prokaryotes based upon isolate genome, metagenome-assembled genome or single-amplified genome sequences. Otherwise, it is s

Judicial Opinions 112–122

Citation
Arahal et al. (2022). International Journal of Systematic and Evolutionary Microbiology 72 (8)
Names
Polyangiia Terrimicrobiia Endomicrobiia Spirosomataceae
Abstract
Opinion 112 denies the request to place Seliberia Aristovskaya and Parinkina 1963 (Approved Lists 1980) on the list of rejected names because the information provided is insufficient. For the same reason, Opinion 113 denies the request to reject Shewanella irciniae Lee et al. 2006 and Opinion 114 denies the request to reje